1.上海师范大学 化学与材料科学学院 上海 200234
2.中国科学院上海应用物理研究所 上海 201800
3.南方科技大学 深圳 518055
YU Ming (male) was born in 1978, and obtained his doctoral degree from Shanghai Institute of Applied Physics, Chinese Academy of Sciences, in 2010
LI Linfan, professor, E-mail: lilinfan@sinap.ac.cn
扫 描 看 全 文
YU Ming, LIU Zepeng, LIU Sha, et al. Surface modification of MIL-101(Cr) metal-organic framework in tetrahydropyran aqueous solution by radiolytic method. [J]. Journal of Radiation Research and Radiation Processing 41(1):16-23(2023)
YU Ming, LIU Zepeng, LIU Sha, et al. Surface modification of MIL-101(Cr) metal-organic framework in tetrahydropyran aqueous solution by radiolytic method. [J]. Journal of Radiation Research and Radiation Processing 41(1):16-23(2023) DOI: 10.11889/j.1000-3436.2022-0098.
金属有机框架的比表面积和表面亲水性的改变常通过改变其中心金属离子和有机配体的类型来重新合成。本文利用辐射法将金属有机框架MIL-101(Cr)在四氢吡喃水溶液中进行表面改性,大量的羟基被引入到表面,有效地提高了材料的表面亲水性,并在不改变中心金属离子和有机配体的情况下大幅提高了材料的比表面积。傅里叶变换红外光谱和X射线光电子能谱证明了四氢吡喃的辐解产物通过共价键结合到材料的表面,X射线衍射谱证明了材料的晶体结构在辐照后仍然保留,比表面积从1 520 m,2,/g大幅增长至3 247 m,2,/g,水接触角从超疏水的156.7°降低至亲水的53.7°。结果表明:辐照下金属有机框架MIL-101(Cr)与四氢吡喃的反应显著提高了材料的比表面积和亲水性。本研究有望将辐射法应用于简单快速改性制备各种性能的金属有机框架。
The specific surface area and surface hydrophilicity of metal-organic frameworks can be tailored by changing their central metal ions and organic ligands. In this study, the surface of the metal-organic framework MIL-101(Cr) was modified in an aqueous solution of tetrahydropyran via the radiolytic method. A large number of hydroxyl groups were introduced to the surface of MIL-101(Cr), thereby effectively improving its surface hydrophilicity and substantially increasing its specific surface area without changing its central metal ion and organic ligand. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that the irradiation products of tetrahydropyran were bound to the surface of MIL-101(Cr) through covalent bonding. X-ray diffractometry demonstrated that the crystal structure of the material was retained after irradiation. The specific surface area of MIL-101(Cr) significantly increased, and water contact angle tests indicated that the surface changed from hydrophobic to hydrophilic after modification. These results show that the irradiation reaction of MIL-101(Cr) with tetrahydropyran significantly improves its specific surface area and hydrophilicity. This study provides guidance on the application of the irradiation method to prepare metal-organic frameworks with various properties by simple and rapid modification.
金属有机框架MIL-101(Cr)四氢吡喃辐解反应表面改性
Metal-organic frameworksMIL-101(Cr)TetrahydropyranIrradiation reactionSurface modification
Li H L, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. DOI: 10.1038/46248http://dx.doi.org/10.1038/46248.
Jiao L, Seow J Y R, Skinner W S, et al. Metal-organic frameworks: structures and functional applications[J]. Materials Today, 2019, 27: 43-68. DOI: 10.1016/j.mattod. 2018.10.038http://dx.doi.org/10.1016/j.mattod.2018.10.038.
Gándara F, Furukawa H, Lee S, et al. High methane storage capacity in aluminum metal-organic frameworks[J]. Journal of the American Chemical Society, 2014, 136(14): 5271-5274. DOI: 10.1021/ja501606hhttp://dx.doi.org/10.1021/ja501606h.
Wang D K, Li Z H. Coupling MOF-based photocatalysis with Pd catalysis over Pd@MIL-100(Fe) for efficient N-alkylation of amines with alcohols under visible light[J]. Journal of Catalysis, 2016, 342: 151-157. DOI: 10.1016/j.jcat.2016.07.021http://dx.doi.org/10.1016/j.jcat.2016.07.021.
Chen Z J, Li P H, Anderson R, et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy[J]. Science, 2020, 368(6488): 297-303. DOI: 10.1126/science.aaz8881http://dx.doi.org/10.1126/science.aaz8881.
Tranchemontagne D J, Hunt J R, Yaghi O M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0[J]. Tetrahedron, 2008, 64(36): 8553-8557. DOI: 10.1016/j.tet.2008.06.036http://dx.doi.org/10.1016/j.tet.2008.06.036.
Janiak C, Vieth J K. MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs)[J]. New Journal of Chemistry, 2010, 34(11): 2366-2388. DOI: 10.1039/C0NJ00275Ehttp://dx.doi.org/10.1039/C0NJ00275E.
Varma R S, Baul A, Wadhwa R, et al. Introduction to metal-organic frameworks (MOFs)[M]. Metal-Organic Frameworks (MOFs) as Catalysts. Singapore: Springer Nature Singapore, 2022: 3-42. DOI: 10.1007/978-981-16-7959-9_1http://dx.doi.org/10.1007/978-981-16-7959-9_1.
Yaghi O M, Kalmutzki M J, Diercks C S. Introduction to reticular chemistry: metal-organic frameworks and covalent organic frameworks[M]. Germany: Wiley-VCH, 2019: 57-82. 10.1002/9783527821099http://dx.doi.org/10.1002/9783527821099
Kim M, Cahill J F, Fei H H, et al. Postsynthetic ligand and cation exchange in robust metal-organic frameworks[J]. Journal of the American Chemical Society, 2012, 134(43): 18082-18088. DOI: 10.1021/ja3079219http://dx.doi.org/10.1021/ja3079219.
Cohen S M. Modifying MOFs: new chemistry, new materials[J]. Chemical Science, 2010, 1(1): 32-36. DOI: 10.1039/C0SC00127Ahttp://dx.doi.org/10.1039/C0SC00127A.
Gupta B, Anjum N. Development of membranes by radiation grafting of acrylamide into polyethylene films: Characterization and thermal investigations[J]. Journal of Applied Polymer Science, 2001, 82(11): 2629-2635. DOI: 10.1002/app.2115http://dx.doi.org/10.1002/app.2115.
Zhao N, Peng J, Liu G, et al. PVP-capped CdS nanopopcorns with type-II homojunctions for highly efficient visible-light-driven organic pollutant degradation and hydrogen evolution[J]. Journal of Materials Chemistry A, 2018, 6(38): 18458-18468. DOI: 10.1039/C8TA03414Ahttp://dx.doi.org/10.1039/C8TA03414A.
Wang H T, Jiang H Q, Shen R F, et al. Electron-beam radiation effects on the structure and properties of polypropylene at low dose rates[J]. Nuclear Science and Techniques, 2018, 29(6): 87. DOI: 10.1007/s41365-018-0424-yhttp://dx.doi.org/10.1007/s41365-018-0424-y.
Nasef M M, Hegazy E S A. Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films[J]. Progress in Polymer Science, 2004, 29(6): 499-561. DOI: 10.1016/j.progpolymsci.2004.01.003http://dx.doi.org/10.1016/j.progpolymsci.2004.01.003.
Wang J P, Chen Y Z, Ge X W, et al. Gamma radiation-induced grafting of a cationic monomer onto chitosan as a flocculant[J]. Chemosphere, 2007, 66(9): 1752-1757. DOI: 10.1016/j.chemosphere.2006.06.072http://dx.doi.org/10.1016/j.chemosphere.2006.06.072.
Guo L H, Li B, Wang H F. Effect of maleic anhydride/vinyltrimethoxysilane-co-grafting polypropylene on the properties of wood-flour/polypropylene composites by electron-beam preirradiation[J]. Journal of Applied Polymer Science, 2011, 121(1): 402-409. DOI: 10.1002/app.33626http://dx.doi.org/10.1002/app.33626.
Yu M, Wang Z Q, Lv M, et al. Antisuperbug cotton fabric with excellent laundering durability[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 19866-19871. DOI: 10.1021/acsami.6b07631http://dx.doi.org/10.1021/acsami.6b07631.
虞鸣, 王自强, 李景烨. 利用辐射接枝实现棉布无废水排放常温印染的研究[J]. 染整技术, 2020, 42(10): 13-16. 10.3969/j.issn.1005-9350.2020.10.002http://dx.doi.org/10.3969/j.issn.1005-9350.2020.10.002
YU Ming, WANG Ziqiang, LI Jingye. Non-effluent dyeing for cotton fabric at room temperature using radiation-induced graft polymerization technology[J]. Textile Dyeing and Finishing Journal, 2020, 42(10): 13-16. 10.3969/j.issn.1005-9350.2020.10.002http://dx.doi.org/10.3969/j.issn.1005-9350.2020.10.002
Yu M, Li W X, Wang Z Q, et al. Covalent immobilization of metal—organic frameworks onto the surface of nylon—a new approach to the functionalization and coloration of textiles[J]. Scientific Reports, 2016, 6: 22796. DOI: 10.1038/srep22796http://dx.doi.org/10.1038/srep22796.
Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. DOI: 10.1126/science.1116275http://dx.doi.org/10.1126/science.1116275.
Yu C H, Zhao L, Wang S J, et al. One-step radiation-induced construction of multi-responsive self-assemblies using simple cyclic ethers[J]. Soft Matter, 2013, 9(25): 5959-5965. DOI: 10.1039/C3SM50327Ehttp://dx.doi.org/10.1039/C3SM50327E.
0
Views
22
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution