1.上海理工大学 上海 200093
2.中国科学院上海应用物理研究所 上海 201800
3.上海科技大学 上海 200031
LIANG Qingru (male) was born in February 1998, and obtained his bachelor's degree from Luoyang Normal University in 2020. Now he is a graduate student at University of Shanghai Science and Technology, majoring in chemical engineering
XING Zhe, assistant professor, E-mail: xingzhe@sinap.ac.cn
WU Guozhong, professor, E-mail: wuguozhong@sinap.ac.cn
扫 描 看 全 文
LIANG Qingru, JI Zhenyan, DONG Chunlei, et al. Epoxy-functionalized polyethylene-octene prepared by γ-ray radiation and its application in polyamide 6 toughening modification. [J]. Journal of Radiation Research and Radiation Processing 41(1):24-32(2023)
LIANG Qingru, JI Zhenyan, DONG Chunlei, et al. Epoxy-functionalized polyethylene-octene prepared by γ-ray radiation and its application in polyamide 6 toughening modification. [J]. Journal of Radiation Research and Radiation Processing 41(1):24-32(2023) DOI: 10.11889/j.1000-3436.2022-0107.
利用,60,Co γ射线辐射接枝法制备环氧功能化的乙烯-辛烯共聚物(POE-,g,-PGMA),并且采用双螺杆熔融挤出法制备添加POE-,g,-PGMA的尼龙6/聚乙烯-辛烯(PA6/POE)合金。研究了添加POE-,g,-PGMA对PA6/POE合金力学性能、热性能、表面形貌、界面相容性和吸水特性的影响。结果表明:γ射线引发了GMA在POE上的接枝聚合反应,PA6/POE合金断面的SEM照片显示添加POE-,g,-PGMA后POE分散相粒径显著减小,表明POE-,g,-PGMA起到增容剂的作用;Molau试验的结果证实了POE-,g,-PGMA与PA6之间的增容反应;热分析表明,分散相POE及POE-,g,-PGMA的加入对PA6的熔融行为影响不大,但在降温结晶过程中结晶温度提前约18 °C,结晶度提升约为4.5%。此外,与未增容PA6/POE合金相比,增容PA6/POE合金的缺口冲击强度显著提高,在本实验条件下,POE-,g,-PGMA添加量为3%时缺口冲击强度最高值为纯PA6的2.75倍。
Epoxy-functionalized ethylene-octene copolymer (POE-,g,-PGMA) was prepared by ,60,Co γ-ray radiation, and polyamide 6/polyethylene-octene blend (PA6/POE) containing POE-,g,-PGMA was prepared by twin-screw melt extrusion. In this study, the mechanical properties, thermal properties, surface morphology, interfacial compatibility, and water absorption properties of PA6/POE blends with added POE-g-PGMA were investigated. The results showed that GMA was successfully grafted on POE by γ-ray radiation. The morphological analysis showed that the addition of POE-,g,-PGMA enhanced the dispersion of POE particles in the PA6 matrix. In particular, it demonstrated that with the addition of POE-,g,-PGMA, pure PA6 has good interfacial compatibility with POE. The results of the Molau test confirmed the compatibilization reactions between POE-,g,-PGMA and PA6. The thermal analysis showed that the addition of POE and POE-,g,-PGMA in the dispersed phase had negligible effect on the melting behavior of PA6; however, the crystallization temperature of PA6 improved by approximately 18 °C during the cooling crystallization process, and the crystallinity increased by approximately 4.5%. Furthermore, the impact strength of the compatibilized PA6/POE blend was significantly higher than that of the PA6/POE blend, with the highest value of impact strength obtained at a POE-,g,-PGMA content of 3% being approximately 2.75 times greater than that of pure PA6 under the experimental conditions.
辐射接枝环氧功能化尼龙6界面相容性缺口冲击强度
Radiation graftingEpoxy functionalizationPolyamide 6Interfaciale compatibilityNotched impact strength
Cai Y B, Li Q, Wei Q F, et al. Structures, thermal stability, and crystalline properties of polyamide6/organic-modified Fe-montmorillonite composite nanofibers by electrospinning[J]. Journal of Materials Science, 2008, 43(18): 6132-6138. DOI: 10.1007/s10853-008-2921-6http://dx.doi.org/10.1007/s10853-008-2921-6.
Vannini M, Marchese P, Celli A, et al. Strategy to improve PA6 performances by melt compounding[J]. Polymer Testing, 2018, 67: 84-91. DOI: 10.1016/j.polymertesting.2018.02.021http://dx.doi.org/10.1016/j.polymertesting.2018.02.021.
Aparna S, Purnima D, Adusumalli R B. Review on various compatibilizers and its effect on mechanical properties of compatibilized nylon blends[J]. Polymer-Plastics Technology and Engineering, 2017, 56(6): 617-634. DOI: 10.1080/03602559.2016.1233280http://dx.doi.org/10.1080/03602559.2016.1233280.
Poongavalappil S, Svoboda P, Theravalappil R, et al. Study on the influence of electron beam irradiation on the thermal, mechanical, and rheological properties of ethylene-octene copolymer with high comonomer content[J]. Journal of Applied Polymer Science, 2013, 128(5): 3026-3033. DOI: 10.1002/app.38479http://dx.doi.org/10.1002/app.38479.
Basuli U, Chaki T K, Naskar K. Influence of Engage® copolymer type on the properties of Engage®/silicone rubber-based thermoplastic dynamic vulcanizates[J]. Express Polymer Letters, 2008, 2(12): 846-854. DOI: 10. 3144/expresspolymlett.2008.99http://dx.doi.org/10.3144/expresspolymlett.2008.99.
Hong C E, Lee Y, Jin B E, et al. Tensile properties and stress whitening of polypropylene/polyolefin elastomer/magnesium hydroxide flame retardant composites for cable insulating application[J]. Journal of Applied Polymer Science, 2005, 97(6): 2311-2318. DOI: 10.1002/app.21776http://dx.doi.org/10.1002/app.21776.
El-Wakil A A, Moustafa H, Abdel-Hakim A. Effect of LDPE-g-MA as a compatibilizer for LDPE/PA6 blend on the phase morphology and mechanical properties[J]. Polymer Bulletin, 2022, 79(4): 2249-2262. DOI: 10.1007/s00289-021-03618-9http://dx.doi.org/10.1007/s00289-021-03618-9.
de Almeida Santos da Silva G, D’Almeida J R M. Mechanical properties and morphology of HDPE/PA12 blends compatibilized with HDPE-alt-MAH[J]. Polymers and Polymer Composites, 2022, 30: 096739112110640. DOI: 10.1177/09673911211064049http://dx.doi.org/10.1177/09673911211064049.
Liu X J, Gu X H, Hou B Q. Preparation of POE graft copolymer and its application of toughening modification for PA6[J]. Polymer-Plastics Technology and Engineering, 2013, 52(4): 344-351. DOI: 10.1080/03602559.2012.748801http://dx.doi.org/10.1080/03602559.2012.748801.
Esmizadeh E, Vahidifar A, Shojaie S, et al. Tailoring the properties of PA6 into high-performance thermoplastic elastomer: simultaneous reinforcement and impact property modification[J]. Materials Today Communications, 2021, 26: 102027. DOI: 10.1016/j.mtcomm.2021.102027http://dx.doi.org/10.1016/j.mtcomm.2021.102027.
Lin X T, Liu Y J, Chen X, et al. Reactive compatibilization of polyamide 6/olefin block copolymer blends: phase morphology, rheological behavior, thermal behavior, and mechanical properties[J]. Materials (Basel, Switzerland), 2020, 13(5): 1146. DOI: 10.3390/ma13051146http://dx.doi.org/10.3390/ma13051146.
张雪娇, 赵晓莉. 聚合物合金相容性研究进展[J]. 应用化工, 2012, 41(8): 1448-1451. DOI: 10.16581/j.cnki.issn1671-3206.2012.08.005http://dx.doi.org/10.16581/j.cnki.issn1671-3206.2012.08.005.
ZHANG Xuejiao, ZHAO Xiaoli. Research progress in compatibility of polymer alloy[J]. Applied Chemical Industry, 2012, 41(8): 1448-1451. DOI: 10.16581/j.cnki.issn1671-3206.2012.08.005http://dx.doi.org/10.16581/j.cnki.issn1671-3206.2012.08.005.
熊智, 李玉龙, 冯鑫鑫, 等. 辐射制备复合超级吸水材料及其抗紫外性能[J]. 辐射研究与辐射工艺学报, 2022, 40(4): 040202. DOI: 10.11889/j.1000-3436.2022-0008http://dx.doi.org/10.11889/j.1000-3436.2022-0008.
XIONG Zhi, LI Yulong, FENG Xinxin, et al. Radiation synthesis of a super absorbent polymer and its ultraviolet resistance property[J]. Journal of Radiation Research and Radiation Processing, 2022, 40(4): 040202. DOI: 10. 11889/j.1000-3436.2022-0008http://dx.doi.org/10.11889/j.1000-3436.2022-0008.
Chowdhury S R, Sabharwal S. Molecular-scale design of a high performance organic-inorganic hybrid with the help of gamma radiation[J]. Journal of Materials Chemistry, 2011, 21(19): 6999-7006. DOI: 10.1039/C1JM10943Jhttp://dx.doi.org/10.1039/C1JM10943J.
Lima M S, Matias Á A, Costa J R C, et al. Glycidyl methacrylate-based copolymers as new compatibilizers for polypropylene/polyethylene terephthalate blends[J]. Journal of Polymer Research, 2019, 26(6): 127. DOI: 10. 1007/s10965-019-1784-7http://dx.doi.org/10.1007/s10965-019-1784-7.
Gopalan A M, Naskar K. Ultra-high molecular weight styrenic block copolymer/TPU blends for automotive applications: influence of various compatibilizers[J]. Polymers for Advanced Technologies, 2019, 30(3): 608-619. DOI: 10.1002/pat.4497http://dx.doi.org/10.1002/pat.4497.
廖晓兰, 杨学稳, 郭晴晴. 固相接枝法合成聚丙烯、马来酸酐、苯乙烯的接枝物[J]. 天津化工, 2010, 24(1): 12-14. DOI: 10.3969/j.issn.1008-1267.2010.01.004http://dx.doi.org/10.3969/j.issn.1008-1267.2010.01.004.
LIAO Xiaolan, YANG Xuewen, GUO Qingqing. Solid phase graft copolymerization of PP-g-(MAH-St) and its compatibilizing effect of PP/SBR blends[J]. Tianjin Chemical Industry, 2010, 24(1): 12-14. DOI: 10.3969/j.issn.1008-1267.2010.01.004http://dx.doi.org/10.3969/j.issn.1008-1267.2010.01.004.
Li Z, et al. A facile method to prepare polypropylene/poly(butyl acrylate) alloy via water-solid phase suspension grafting polymerization[J]. Chinese Chemical Letters, 2015, 26(11): 1351-1354. DOI: 10.1016/j.cclet.2015. 06.018http://dx.doi.org/10.1016/j.cclet.2015.06.018.
Tan X M. Radiation grafting of maleic anhydride onto polypropylene in solid state via ultrafine blend[J]. Radiation Effects and Defects in Solids, 2014, 169(5): 437-446. DOI: 10.1080/10420150.2014.905937http://dx.doi.org/10.1080/10420150.2014.905937.
Jha A, Ray Chowdhury S, Krishnanand K, et al. Radiation-assisted controlled grafting and reaction parameter optimization of an industrially important polyolefin elastomer (POE)[J]. Polymers for Advanced Technologies, 2016, 27(7): 889-897. DOI: 10.1002/pat. 3745http://dx.doi.org/10.1002/pat.3745.
毛泽誉. 烯烃共聚物的接枝改性及其在增韧PBT中的应用[D]. 长春: 长春工业大学, 2020.
MAO Zeyu. Graft modification of olefin copolymer and application in toughening PBT[D]. Changchun: Changchun University of Technology, 2020.
Rossato J H H, Lemos H G, Mantovani G L. The influence of viscosity and composition of ABS on the ABS/SBS blend morphology and properties[J]. Journal of Applied Polymer Science, 2019, 136(8): 47075. DOI: 10. 1002/app.47075http://dx.doi.org/10.1002/app.47075.
Sundararaj U, Macosko C W. Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization[J]. Macromolecules, 1995, 28(8): 2647-2657. DOI: 10.1021/ma00112a009http://dx.doi.org/10.1021/ma00112a009.
van Hemelrijck E, van Puyvelde P, Macosko C W, et al. The effect of block copolymer architecture on the coalescence and interfacial elasticity in compatibilized polymer blends[J]. Journal of Rheology, 2005, 49(3): 783-798. DOI: 10.1122/1.1888625http://dx.doi.org/10.1122/1.1888625.
van Hemelrijck E, van Puyvelde P, Velankar S, et al. Interfacial elasticity and coalescence suppression in compatibilized polymer blends[J]. Journal of Rheology, 2004, 48(1): 143-158. DOI: 10.1122/1.1634987http://dx.doi.org/10.1122/1.1634987.
张帆, 季珎琰, 沈蓉芳, 等. 灭菌剂量下γ射线辐照对环烯烃共聚物的影响及机理研究[J]. 核技术, 2022, 45(3): 030302. DOI: 10.11889/j.0253-3219.2022.hjs.45.030302http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.030302.
ZHANG Fan, JI Zhenyan, SHEN Rongfang, et al. Effect and mechanism of γ-ray irradiation on cyclic olefin copolymer in the sterilization dose range[J]. Nuclear Techniques, 2022, 45(3): 030302. DOI: 10.11889/j.0253-3219.2022.hjs.45.030302http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.030302.
Zhang J G, Deng J. The effect of maleic anhydride grafted styrene-ethylene-butylene-styrene on the friction and wear properties of Polyamide6/carbon nanotube composites[J]. Polymer-Plastics Technology and Engineering, 2011, 50(15): 1533-1536. DOI: 10.1080/03602559.2011.603778http://dx.doi.org/10.1080/03602559.2011.603778.
El-Wakil A A. Study on effect of natural rubber-graft-1, 2-phenylenediamine as antioxidant on oxidation resistance for natural rubber[J]. Polymer-Plastics Technology and Engineering, 2007, 46(6): 661-666. DOI: 10.1080/15583720701271443http://dx.doi.org/10.1080/15583720701271443.
0
Views
25
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution