1.中国原子能科学研究院国防科技工业抗辐照应用技术创新中心 北京 102413
2.北京微电子技术研究所 北京 100076
ZHANG Fuqiang (male) was born in December 1989, and obtained his doctoral degree from Beijing Normal University in 2016
GUO Gang, professor, E-mail: ggg@ciae.ac.cn
扫 描 看 全 文
张付强, 陈启明, 龚艺豪, 等. 不同参数对静态随机存储器总剂量效应的影响[J]. 辐射研究与辐射工艺学报, 2023, 41(06): 060703.
ZHANG Fuqiang, CHEN Qiming, GONG Yihao, et al. Impact of different parameters on the static random access memory under the total ionizing dose[J]. Journal of Radiation Research and Radiation Processing, 2023, 41(6): 060703.
张付强, 陈启明, 龚艺豪, 等. 不同参数对静态随机存储器总剂量效应的影响[J]. 辐射研究与辐射工艺学报, 2023, 41(06): 060703. DOI: 10.11889/j.1000-3436.2022-0120.
ZHANG Fuqiang, CHEN Qiming, GONG Yihao, et al. Impact of different parameters on the static random access memory under the total ionizing dose[J]. Journal of Radiation Research and Radiation Processing, 2023, 41(6): 060703. DOI: 10.11889/j.1000-3436.2022-0120.
基于中国原子能科学研究院钴源建立的器件总剂量辐照装置试验平台,开展了静态随机存储器(SRAM)的总剂量效应研究。分别研究了器件特征工艺尺寸、累积辐照剂量、辐照剂量率以及温度对器件总剂量效应的影响。研究结果表明:在一定范围内剂量率对器件的总剂量效应影响不大,器件特征工艺尺寸越大总剂量效应的影响越大,温度越高总剂量效应影响越弱。此外还测量得到了该总剂量辐照实验平台的典型剂量率分布及均匀性。相关结果为宇航、核工业用电子器件抗辐射加固设计提供了一定的参考。
The effect of the total ionizing dose (TID) on the static random access memory (SRAM) is conducted on the ,60,Co radioactive source in the China Institute of Atomic Energy. The study explores the influence of the device process size, dose rate, temperature and total dose on TID. The results indicated that within a certain range, the dose rate had little influence on the TID of the device. The larger the characteristic size of the device, the greater TID effect, while the higher temperature, the weaker the total dose effect. In addition, the typical dose rate and the uniformity of the source are achieved. The research of the paper provide an insight into radiation hardening, particularly in the aerospace and the nuclear industries.
静态随机存储器总剂量效应功耗电流特征尺寸
Static random access memoryTotal dose effectPower supply currentFeature size
陈伟, 杨海亮, 郭晓强, 等. 空间辐射物理及应用研究现状与挑战[J]. 科学通报, 2017, 62(10): 978-989. 10.1360/n972016-00438http://dx.doi.org/10.1360/n972016-00438
CHEN Wei, YANG Hailiang, GUO Xiaoqiang, et al. The research status and challenge of space radiation physics and application[J]. Chinese Science Bulletin, 2017, 62(10): 978-989. 10.1360/n972016-00438http://dx.doi.org/10.1360/n972016-00438
李茂顺, 余学峰, 郭旗, 等. CMOS SRAM总剂量辐射及退火效应研究[J]. 核电子学与探测技术, 2010, 30(8): 1087-1091. DOI: 10.3969/j.issn.0258-0934.2010.08.020http://dx.doi.org/10.3969/j.issn.0258-0934.2010.08.020.
LI Maoshun, YU Xuefeng, GUO Qi, et al. Research on the total dose irradiation and annealing effects of CMOS SRAM[J]. Nuclear Electronics & Detection Technology, 2010, 30(8): 1087-1091. DOI: 10.3969/j.issn.0258-0934.2010.08.020http://dx.doi.org/10.3969/j.issn.0258-0934.2010.08.020.
Sharp R, Decréton M. Radiation tolerance of components and materials in nuclear robot applications[J]. Reliability Engineering and System Safety, 1996, 53(3): 291-299. DOI: 10.1016/S0951-8320(96)00054-3http://dx.doi.org/10.1016/S0951-8320(96)00054-3.
Boden A, Kruger W, Muller T. Investigation and improvement of the radiation tolerance of a teleoperated manipulator-equipped vehicle to be used in radioactive environments[C]//RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294). Cannes, France: IEEE, 2002: 319-322. DOI: 10.1109/RADECS.1997. 698916http://dx.doi.org/10.1109/RADECS.1997.698916.
Tsitsimpelis I, Talor C J, Lennox B, et al. A review of ground-based robotic systems for the characterization of nuclear environments [J]. Progress in Nuclear Energy, 2019, 111: 109-124. DOI: 10.1016/j.pnucene.2018. 10.023http://dx.doi.org/10.1016/j.pnucene.2018.10.023.
董艺, 沈鸣杰, 刘岐. 浮栅器件和普通NMOS器件总剂量效应对比研究[J]. 航天器环境工程, 2018, 35(5): 468-472. DOI: 10.12126/see.2018.05.011http://dx.doi.org/10.12126/see.2018.05.011.
DONG Yi, SHEN Mingjie, LIU Qi. Comparison of total ionizing dose effect between floating gate device and NMOS device[J]. Spacecraft Environment Engineering, 2018, 35(5): 468-472. DOI: 10.12126/see.2018.05.011http://dx.doi.org/10.12126/see.2018.05.011.
殷亚楠, 刘杰, 姬庆刚, 等. 总剂量和重离子协同作用下浮栅单元错误的退火特性研究[J]. 核技术, 2019, 42(1): 010502. DOI: 10.11889/j.0253-3219.2019.hjs.42.010502http://dx.doi.org/10.11889/j.0253-3219.2019.hjs.42.010502.
YIN Yanan, LIU Jie, JI Qinggang, et al. Annealing behavior study on floating gate errors induced by γ followed by heavy ion irradiation[J]. Nuclear Techniques, 2019, 42(1): 010502. DOI: 10.11889/j.0253-3219.2019.hjs.42.010502http://dx.doi.org/10.11889/j.0253-3219.2019.hjs.42.010502.
郭红霞, 王伟, 张凤祁, 等. 新型微电子技术电离辐射总剂量效应面临的挑战[J]. 核电子学与探测技术, 2011, 31(1): 115-119. DOI: 10.3969/j.issn.0258-0934.2011. 01.028http://dx.doi.org/10.3969/j.issn.0258-0934.2011.01.028.
GUO Hongxia, WANG Wei, ZHANG Fengqi, et al. Future challenges in total ionizing dose for advanced CMOS technologies[J]. Nuclear Electronics & Detection Technology, 2011, 31(1): 115-119. DOI: 10.3969/j.issn. 0258-0934.2011.01.028http://dx.doi.org/10.3969/j.issn.0258-0934.2011.01.028.
薛玉雄, 曹洲, 郭祖佑, 等. 星用功率MOSFET器件总剂量效应试验研究[J]. 核电子学与探测技术, 2008, 28(3): 538-542. DOI: 10.3969/j.issn.0258-0934.2008.03.022http://dx.doi.org/10.3969/j.issn.0258-0934.2008.03.022.
XUE Yuxiong, CAO Zhou, GUO Zuyou, et al. Study of total ionization dose test of power MOSFET for satellite applications[J]. Nuclear Electronics & Detection Technology, 2008, 28(3): 538-542. DOI: 10.3969/j.issn. 0258-0934.2008.03.022http://dx.doi.org/10.3969/j.issn.0258-0934.2008.03.022.
李明, 余学峰, 许发月, 等. 静态随机存储器总剂量辐射及退火效应研究[J]. 原子能科学技术, 2012, 46(4): 507-512.
LI Ming, YU Xuefeng, XU Fayue, et al. Research on total dose irradiation and annealing effect of static random access memory[J]. Atomic Energy Science and Technology, 2012, 46(4): 507-512.
国家军用标准-总装备部. 半导体器件辐射加固试验方法 γ总剂量辐照试验: GJB 762.2―1989[S]. 北京: 国防科工委, 1989.
National Military Standards-General Armament Department. Semiconductor device radiation hardening test method γ total dose irradiation test: GJB 762.2―1989[S]. Beijing: National Defense Science and Technology Commission, 1989.
Dodd P E, Shaneyfelt M R, Schwank J R, et al. Current and future challenges in radiation effects on CMOS electronics[J]. IEEE Transactions on Nuclear Science, 2010,57(4): 1747-1763. DOI: 10.1109/TNS.2010. 2042613http://dx.doi.org/10.1109/TNS.2010.2042613.
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution