1.上海理工大学 上海 200093
2.中国科学院上海应用物理研究所 上海 201800
3.上海科技大学 上海 200031
HONG Wanfeng (male) was born in April 1998, and obtained his bachelor's degree from Quzhou University in 2020. Now he is a graduate student at University of Shanghai Science and Technology, majoring in chemical engineering
ZHANG Wenli, assistant professor, E-mail: zhangwenli@sinap.ac.cn
WU Guozhong, professor, E-mail: wuguozhong@sinap.ac.cn
扫 描 看 全 文
HONG Wanfeng, ZHANG Fan, REN Wanning, et al. Synergistic effect of itaconic acid and irradiation modification on cyclization of polyacrylonitrile. [J]. Journal of Radiation Research and Radiation Processing 41(5):050203(2023)
HONG Wanfeng, ZHANG Fan, REN Wanning, et al. Synergistic effect of itaconic acid and irradiation modification on cyclization of polyacrylonitrile. [J]. Journal of Radiation Research and Radiation Processing 41(5):050203(2023) DOI: 10.11889/j.1000-3436.2022-0123.
以衣康酸(IA)作为第二单体,采用水相沉淀聚合法制备出IA含量不同的聚丙烯腈(PAN)粉末,在室温及空气气氛中对衣康酸丙烯腈共聚物(P(AN-co-IA))粉末进行电子束辐照(EB)处理,吸收剂量为25~200 kGy。通过傅里叶红外光谱仪对P(AN-co-IA)进行化学结构表征,通过差示扫描量热仪及热失重分析仪研究IA含量对PAN环化的影响,及辐照对P(AN-co-IA)粉末热性能的影响。结果表明,EB改性通过自由基机制促进了PAN的环化反应,使其在较低温度下发生;引入IA改性PAN则通过离子机制引发环化反应。两种改性方法对环化的促进作用可以叠加,有协同作用,但随着吸收剂量和IA含量的增加,这种协同作用效果逐渐减小。定义吸收剂量每增加10 kGy,P(AN-co-IA)放热焓的减少量为影响系数,吸收剂量小于100 kGy时,电子束辐照对P(AN-co-IA)放热焓的减少有显著影响,但其影响随着吸收剂量的增加而快速减小,超过100 kGy后,影响系数的减小趋势开始变缓和。
Polyacrylonitrile (PAN) powders with different itaconic acid (IA) contents were prepared using aqueous precipitation polymerization with IA as the second monomer. The powders of the copolymer P(AN-co-IA) were then subjected to electron beam (EB) irradiation treatment at room temperature and under an air atmosphere, with an absorbed dose ranging from 25 to 200 kGy. The chemical structure of P(AN-co-IA) was characterized using Fourier transform infrared spectroscopy. The effect of the IA content on PAN cyclization and the effect of EB irradiation on the thermal properties of the P(AN-co-IA) powders were investigated using differential scanning calorimetry and thermogravimetric analysis. The results showed that EB modification promoted the cyclization of PAN through a free radical mechanism, enabling cyclization at lower temperatures. In contrast, IA modification triggered cyclization through an ionic mechanism. Both modification methods synergistically promoted cyclization; however, their synergistic effect gradually decreased with increasing absorbed dose and IA content. The coefficient of influence was defined as the decrease in the exothermic enthalpy per 10 kGy increase in the absorbed dose. When the absorbed dose was less than 100 kGy, EB irradiation significantly affected the decrease in the exothermic enthalpy; however, the influence decreased rapidly with increasing absorbed dose. Moreover, when the absorbed dose exceeded 100 kGy, the rate of decrease of the coefficient of influence became reduced.
聚丙烯腈电子束辐照衣康酸环化反应协同作用
PolyacrylonitrileElectron beam irradiationItaconic acidCyclization reactionSynergism
Perepelkin K E. Oxidized (cyclized) polyacrylonitrile fibres—oxypan. A review[J]. Fibre Chemistry, 2003, 35(6): 409-416. DOI: 10.1023/B: FICH.0000020769. 42823.31http://dx.doi.org/10.1023/B:FICH.0000020769.42823.31.
Serkov A T, Budnitskii G A, Radishevskii M B, et al. Improving carbon fibre production technology[J]. Fibre Chemistry, 2003, 35(2): 117-121. DOI: 10.1023/A: 1024838312261http://dx.doi.org/10.1023/A:1024838312261.
Heo G Y, Yoo Y J, Park S J. Effect of carbonization temperature on electrical conductivity of carbon papers prepared from petroleum pitch-coated glass fibers[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(3): 1040-1043. DOI: 10.1016/j.jiec.2012.11.028http://dx.doi.org/10.1016/j.jiec.2012.11.028.
Jeong E, Kim J, Cho S H, et al. New application of layered silicates for carbon fiber reinforced carbon composites[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(2): 191-197. DOI: 10.1016/j.jiec. 2011.02.032http://dx.doi.org/10.1016/j.jiec.2011.02.032.
Miao P K, Wu D M, Zeng K, et al. Influence of electron beam pre-irradiation on the thermal behaviors of polyacrylonitrile[J]. Polymer Degradation and Stability, 2010, 95(9): 1665-1671. DOI: 10.1016/j.polymdegradstab.2010.05.028http://dx.doi.org/10.1016/j.polymdegradstab.2010.05.028.
Shin H K, Park M, Kang P H, et al. Preparation and characterization of polyacrylonitrile-based carbon fibers produced by electron beam irradiation pretreatment[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3789-3792. DOI: 10.1016/j.jiec.2013.12.080http://dx.doi.org/10.1016/j.jiec.2013.12.080.
王中泽, 钟珊, 张博文, 等. 共聚单体改性PAN原丝热性能研究[J]. 化工新型材料, 2017, 45(3): 116-118.
WANG Zhongze, ZHONG Shan, ZHANG Bowen, et al. Study on pre-oxidation thermal behavior of PAN precursor by comonomer modification[J]. New Chemical Materials, 2017, 45(3): 116-118.
Fu Z Y, Liu B J, Deng Y J, et al. The suitable itaconic acid content in polyacrylonitrile copolymers used for PAN-based carbon fibers[J]. Journal of Applied Polymer Science, 2016, 133(38): 43919. DOI: 10.1002/app.43919http://dx.doi.org/10.1002/app.43919.
Park S, Kil H S, Choi D, et al. Rapid stabilization of polyacrylonitrile fibers achieved by plasma-assisted thermal treatment on electron-beam irradiated fibers[J]. Journal of Industrial and Engineering Chemistry, 2019, 69: 449-454. DOI: 10.1016/j.jiec.2018.10.008http://dx.doi.org/10.1016/j.jiec.2018.10.008.
张文礼. 聚丙烯腈纤维的高剂量率电子束辐照效应及对预氧化的影响[D]. 上海: 中国科学院上海应用物理研究所, 2020.
ZHANG Wenli. High dose rate electron beam irradiation effect of polyacrylonitrile fiber and subsequent effect on pre-oxidation[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2020.
王成国, 朱波. 聚丙烯腈基碳纤维[M]. 北京: 科学出版社, 2011: 29-41. 10.3724/sp.j.1105.2011.10235http://dx.doi.org/10.3724/sp.j.1105.2011.10235
WANG Chengguo, ZHU Bo. Polyacrylonitrile based carbon fiber[M]. Beijing: Science Press, 2011: 29-41. 10.3724/sp.j.1105.2011.10235http://dx.doi.org/10.3724/sp.j.1105.2011.10235
Zhao Y Q, Wang C G, Wang Y X, et al. Aqueous deposited copolymerization of acrylonitrile and itaconic acid[J]. Journal of Applied Polymer Science, 2009, 111(6): 3163-3169. DOI: 10.1002/app.29381http://dx.doi.org/10.1002/app.29381.
Simitzis J C, Georgiou P C. Functional group changes of polyacrylonitrile fibres during their oxidative, carbonization and electrochemical treatment[J]. Journal of Materials Science, 2015, 50(13): 4547-4564. DOI: 10. 1007/s10853-015-9004-2http://dx.doi.org/10.1007/s10853-015-9004-2.
Zhang H L, Quan L, Shi F J, et al. Rheological behavior of amino-functionalized multi-walled carbon nanotube/polyacrylonitrile concentrated solutions and crystal structure of composite fibers[J]. Polymers, 2018, 10(2): 186. DOI: 10.3390/polym10020186http://dx.doi.org/10.3390/polym10020186.
Kim D, Kim K S, Ko S, et al. Assessment of geotechnical variability of Songdo silty clay[J]. Engineering Geology, 2012, 133: 1-8. DOI: 10.1016/j.enggeo.2012.02.009http://dx.doi.org/10.1016/j.enggeo.2012.02.009.
Paiva M C, Kotasthane P, Edie D D, et al. UV stabilization route for melt-processible PAN-based carbon fibers[J]. Carbon, 2003, 41(7): 1399-1409. DOI: 10.1016/S0008-6223(03)00041-1http://dx.doi.org/10.1016/S0008-6223(03)00041-1.
张旺玺. 衣康酸对聚丙烯腈原丝结构和性能的影响[J]. 高分子学报, 2000(3): 287-291. DOI: 10.3321/j.issn: 1000-3304.2000.03.007http://dx.doi.org/10.3321/j.issn:1000-3304.2000.03.007.
ZHANG Wangxi. Effect of itaconic acid on the structure and properties of pan precursor[J]. Acta Polymerica Sinica, 2000(3): 287-291. DOI: 10.3321/j.issn: 1000-3304.2000.03.007http://dx.doi.org/10.3321/j.issn:1000-3304.2000.03.007.
Dalton S, Heatley F, Budd P M. Thermal stabilization of polyacrylonitrile fibres[J]. Polymer, 1999, 40(20): 5531-5543. DOI: 10.1016/S0032-3861(98)00778-2http://dx.doi.org/10.1016/S0032-3861(98)00778-2.
Fu Z Y, Gui Y, Liu S, et al. Effects of an itaconic acid comonomer on the structural evolution and thermal behaviors of polyacrylonitrile used for polyacrylonitrile-based carbon fibers[J]. Journal of Applied Polymer Science, 2014, 131(19): 40834. DOI: 10.1002/app.40834http://dx.doi.org/10.1002/app.40834.
Yu M J, Wang C G, Zhao Y Q, et al. Thermal properties of acrylonitrile/itaconic acid polymers in oxidative and nonoxidative atmospheres[J]. Journal of Applied Polymer Science, 2009: 1207-1212. DOI: 10.1002/app.31664http://dx.doi.org/10.1002/app.31664.
Zhang H L, Quan L, Gao A J, et al. Thermal analysis and crystal structure of poly(acrylonitrile-Co-itaconic acid) copolymers synthesized in water[J]. Polymers, 2020, 12(1): 221. DOI: 10.3390/polym12010221http://dx.doi.org/10.3390/polym12010221.
Mittal J, Konno H, Inagaki M, et al. Denitrogenation behavior and tensile strength increase during carbonization of stabilized pan fibers[J]. Carbon, 1998, 36(9): 1327-1330. DOI: 10.1016/S0008-6223(98)00113-4http://dx.doi.org/10.1016/S0008-6223(98)00113-4.
0
Views
7
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution