1.中国核动力研究设计院 成都 610213
2.中国科学技术大学核科学技术学院 合肥 230026
CAO Qi (male) was born in February 1985, and obtained his master's degree from Sichuan University in June 2011. Now he is an engineering doctoral student at the University of Science and Technology of China and he is an associate professor majoring in reactor water chemistry, radiation chemistry and radiochemistry in Nuclear Power Institute of China
LIN Mingzhang, doctoral degree, professor, E-mail: gelin@ustc.edu.cn
扫 描 看 全 文
CAO Qi, DU Xiangyi, GUO Zifang, et al. γ-radiolysis of boric acid-lithium hydroxide-ammonia coolant. [J]. Journal of Radiation Research and Radiation Processing 41(3):030201(2023)
CAO Qi, DU Xiangyi, GUO Zifang, et al. γ-radiolysis of boric acid-lithium hydroxide-ammonia coolant. [J]. Journal of Radiation Research and Radiation Processing 41(3):030201(2023) DOI: 10.11889/j.1000-3436.2023-0020.
本文探究了γ辐射场下新型冷却剂硼-锂-氨的辐射分解行为,主要考察了不同硼-锂浓度、吸收剂量和吸收剂量率对辐解产物H,2,O,2,、NO,2,-,和NO,3,-,的浓度影响。实验结果表明:在常规的压水堆运行pH范围内(pH,300 ℃,=7.1~7.3),随着硼酸浓度增加,冷却剂体系的H,2,O,2,和NO,2,-,浓度没有明显变化,其中H,2,O,2,的浓度范围在9.28×10,-5,~1.07×10,-4, mol/L之间,NO,2,-,浓度范围为9×10,-6,~1.5×10,-5, mol/L;NO,3,-,浓度相较于前两个产物波动较大,为4×10,-5,~8×10,-5 ,mol/L。随着吸收剂量增加(1~30 kGy),硼-锂-氨体系中的H,2,O,2,和NO,2,-,的平衡浓度增加,分别为1.28×10,-4, mol/L和1.30×10,-5, mol/L,NO,3,-,的浓度未明显变化(4×10,-5,~6×10,-5, mol/L)。在本工作探究的吸收剂量率范围内(1.27~18.86 Gy/min),H,2,O,2,、NO,2,-,和NO,3,-,的浓度均未因吸收剂量率增加而受到显著影响。本工作为新型冷却剂硼-锂-氨体系的实际应用提供了有参考价值的基础数据。
In this study, the γ-radiolysis,of boric acid-lithium hydroxide-ammonia coolant was investigated under different conditions, including boric acid concentration, absorbed dose, and absorbed dose rate. The concentrations of H,2,O,2, NO,2,-, and NO,3,- ,were determined using UV-visible spectroscopy and ion chromatography. With an increase in boric acid concentration, the concentrations of H,2,O,2, and NO,2,-, in the coolant system did not change significantly,within a pH range commonly used in pressurized water reactor operation. Specifically, the concentration of H,2,O,2, varied from 9.28×10,-5, to 1.07×10,-4, mol/L, while that of NO,2,-, changed from 0.9×10,-5, to 1.5×10,-5, mol/L. In contrast, the concentration of NO,3,-, fluctuated significantly, ranging from 4×10,-5, to 8×10,-5 ,mol/L. With an increase in the absorbed dose (1-30 kGy), the equilibrium concentration of H,2,O,2, and NO,2,-, in boric acid-lithium hydroxide-ammonia system increased to 1.28×10,-4, mol/L and 1.30×10,-5, mol/L, respectively. Meanwhile, the concentration of NO,3,-, did not change significantly (4×10,-5, to 6×10,-5, mol/L). The concentrations of the three radiolytic products were not significantly affected within the given absorbed dose rate range (1.27 to 18.86 Gy/min). Overall, this work provides valuable basic data for optimizing the new boric acid-lithium hydroxide-ammonia coolant system.
硼酸氢氧化锂氨冷却剂辐射分解
Boric acidLithium hydroxideAmmoniaCoolantRadiolysis
Song M C, Lee K J. The evaluation of radioactive corrosion product at PWR as change of primary coolant chemistry for long-term fuel cycle[J]. Annals of Nuclear Energy, 2003, 30(12): 1231-1246. DOI: 10.1016/S0306-4549(03)00054-9http://dx.doi.org/10.1016/S0306-4549(03)00054-9.
王凤军, 刘红英, 彭彦龙. 压水堆核电厂一回路水化学控制[J]. 硅谷, 2011(2): 415-421. DOI: 10.3969/j.issn. 1671-7597.2011.02.028http://dx.doi.org/10.3969/j.issn.1671-7597.2011.02.028
WANG Fengjun, LIU Hongying, PENG Yanlong. Chemical control of primary loop water in PWR nuclear power plant[J]. Silicon Valley, 2011(2): 415-421. DOI: 10.3969/j.issn.1671-7597.2011.02.028http://dx.doi.org/10.3969/j.issn.1671-7597.2011.02.028
Ishigure K, Katsumura Y, Sunaryo G R, et al. Radiolysis of high temperature water[J]. Radiation Physics and Chemistry, 1995, 46(4/5/6): 557-560. DOI: 10.1016/0969-806X(95)00217-Lhttp://dx.doi.org/10.1016/0969-806X(95)00217-L.
Buxton G V. High temperature water radiolysis[J]. Studies in Physical and Theoretical Chemistry, 2001, 87: 145-162. DOI: 10.1016/S0167-6881(01)80009-4http://dx.doi.org/10.1016/S0167-6881(01)80009-4.
Luzakov A V, Bulanov A V, Verkhovskaya A O, et al. Radiation-chemical removal of corrosion hydrogen from VVER first-loop coolant[J]. Atomic Energy, 2008, 105(6): 402-407. DOI: 10.1007/s10512-009-9115-4http://dx.doi.org/10.1007/s10512-009-9115-4.
温菊花, 姜峨, 刘金华, 等. 大型压水堆一回路冷却剂富集10B的硼锂水化学应用[J]. 腐蚀与防护, 2015: 36(增刊2): 208-212.
WEN Juhua, JIANG E, LIU Jinhua, et al. Research of water chemistry of enriched 10B and lithium for primary coolant in PWR[J]. Corrosion & Protection, 2015: 36(Supp.2): 208-212.
Koike M, Tachikawa E, Matsui T. Gamma-radiolysis of aqueous boric acid solution[J]. Journal of Nuclear Science and Technology, 1969, 6(4): 163-169. DOI: 10. 1080/18811248.1969.9732863http://dx.doi.org/10.1080/18811248.1969.9732863.
Hickel B, Sehested K. Reaction of hydroxyl radicals with ammonia in liquid water at elevated temperatures[J]. International Journal of Radiation Applications and Instrumentation Part C Radiation Physics and Chemistry, 1992, 39(4): 355-357. DOI: 10.1016/1359-0197(92)90244-ahttp://dx.doi.org/10.1016/1359-0197(92)90244-a.
Rigg T, Scholes G, Weiss J. Chemical actions of ionising radiations in solutions. Part X. The action of X-rays on ammonia in aqueous solution[J]. Journal of the Chemical Society (Resumed), 1952: 3034. DOI: 10.1039/jr9520003034http://dx.doi.org/10.1039/jr9520003034.
Pagsberg P B. Investigation of the NH2 radical produced by pulse radiolysis of ammonia in aqueous solution[J]. Aspects of Research at Risø, 1972, 5: 209.
Ershov B G, Mikhajlova T L, Gordeev A V, et al. Pulse radiolysis of ammonia aqueous solution in the presence of oxygen[J]. Doklady Akademii nauk SSSR, 1988, 300: 4.
Dwibedy P, Kishore K, Dey G R, et al. Nitrite formation in the radiolysis of aerated aqueous solutions of ammonia[J]. Radiation Physics and Chemistry, 1996, 48(6): 743-747. DOI: 10.1016/S0969-806X(96)00037-0http://dx.doi.org/10.1016/S0969-806X(96)00037-0.
Ibe E, Karasawa H, Nagase M, et al. Behavior of nitrogen compounds in radiation field and nuclear reactor systems[J]. Journal of Nuclear Science and Technology, 1989, 26(8): 760-769. DOI: 10.1080/18811248.1989. 9734380http://dx.doi.org/10.1080/18811248.1989.9734380.
Dey G R. Nitrogen compounds' formation in aqueous solutions under high ionizing radiation: an overview[J]. Radiation Physics and Chemistry, 2011, 80(3): 394-402. DOI: 10.1016/j.radphyschem.2010.10.010http://dx.doi.org/10.1016/j.radphyschem.2010.10.010.
Ghormley J A, Stewart A C. Effects of γ-radiation on Ice1[J]. Journal of the American Chemical Society, 1956, 78(13): 2934-2939. DOI: 10.1021/ja01594a004http://dx.doi.org/10.1021/ja01594a004.
0
Views
12
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution