1.精准智能化学重点实验室 中国科学技术大学高分子科学与工程系 合肥 230026
PAN Zuxiong(male)was born in June 1998, and obtained his bachelor’s degree from Anhui University in June 2020. Now he is a graduate student at University of Science and Technology of China, majoring in polymer chemistry and physics
WANG Mozhen, doctoral degree, associate professor, E-mail: pstwmz@ustc.edu.cn
GE Xuewu, professor, E-mail: xwge@ustc.edu.cn
扫 描 看 全 文
PAN Zuxiong, WANG Jiajian, GE Zhiqing, et al. Radiation effects of epoxy resin and h-BN/epoxy resin composites. [J]. Journal of Radiation Research and Radiation Processing 41(5):050202(2023)
PAN Zuxiong, WANG Jiajian, GE Zhiqing, et al. Radiation effects of epoxy resin and h-BN/epoxy resin composites. [J]. Journal of Radiation Research and Radiation Processing 41(5):050202(2023) DOI: 10.11889/j.1000-3436.2023-0040.
环氧树脂(EP)及其复合材料在核工业中有着广泛的应用,对其辐射效应的研究可为开发耐辐射环氧树脂材料提供参考。本工作以四氢邻苯二甲酸二缩水甘油酯(TADE)/甲基六氢苯酐(MHHPA)体系为研究对象,以两种不同平均粒径(7.5 μm和757 nm)的氮化硼为填料制备氮化硼/环氧树脂复合材料。采用密度泛函理论(DFT)对环氧树脂交联结构的裂解方式进行了讨论,并研究了两种氮化硼/环氧树脂复合材料受不同吸收剂量的γ-射线辐照前后的力学性能和热稳定性能的变化规律。结果表明:环氧树脂交联点结构所包含的化学键中,异丙醇单元的C-C键键能最低,最易断裂,从而导致高分子交联网络被破坏。吸收剂量超过250 kGy时,环氧树脂及其复合材料的拉伸强度和热分解温度出现明显下降。辐照后的力学强度是BN粒径和添加量综合影响的结果,当吸收剂量达到1 100 kGy时,质量分数为3%的n-BN/EP的拉伸强度最大,其热分解温度也最高。因此,少量添加亚微米级尺寸的h-BN可以提升环氧树脂的耐辐射性能。本工作对耐辐射环氧树脂复合材料的开发具有理论和实践指导意义。
Epoxy resin (EP) and its composites have extensive applications in the nuclear industry. The study of their radiation effects can provide critical guidance in developing radiation-resistant epoxy resin materials. In this study, an epoxy resin was synthesized from tetrahydrophthalic acid diglycidyl ester and methylhexahydrophthalic anhydride. Boron nitride (BN) particles with two average particle sizes (7.5 μm and 757 nm) were used as filler to prepare two BN/epoxy resin composites. The possible bond cleavage of the crosslinking structural units of epoxy resin was investigated through density functional theory. The mechanical and thermal stability properties of the two BN/epoxy resin composites before and after gamma-ray irradiation under different absorbed doses were studied. The results showed that of all the chemical bonds consisting of a crosslinking structural unit, the C-C of the isopropyl unit had the minimum bond energy, making it easily breakable and leading to a breakdown of the polymer crosslinking network. When the absorbed dose exceeded 250 kGy, the tensile strength and thermal decomposition temperature of the epoxy resin and its composites noticeably decreased. The mechanical strength of the composite epoxy resins after irradiation depended on the combined effects of the BN particle size and the amount of added BN. When the absorbed dose reached 1 100 kGy, n-BN/EP with a mass fraction of 3% exhibited the highest tensile strength and thermal decomposition temperature. Therefore, adding a small amount of submicron-sized h-BN can improve the radiation resistance of epoxy resin. This work has theoretical and practical significance for the development of radiation-resistant epoxy resin composites.
环氧树脂六方氮化硼辐射效应密度泛函理论裂解方式
Epoxy resinHexagonal boron nitrideRadiation effectDensity functional theoryBond cleavage
Jin F L, Li X, Park S J. Synthesis and application of epoxy resins: a review[J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 1-11. DOI: 10.1016/j.jiec.2015.03.026http://dx.doi.org/10.1016/j.jiec.2015.03.026.
Verma C, Olasunkanmi L O, Akpan E D, et al. Epoxy resins as anticorrosive polymeric materials: a review[J]. Reactive and Functional Polymers, 2020, 156: 104741. DOI: 10.1016/j.reactfunctpolym.2020.104741http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104741.
May C. Epoxy resins: chemistry and technology[M]. 2nd ed. Boca Raton: Routledge, 2018. 10.1201/9780203756713-1http://dx.doi.org/10.1201/9780203756713-1
Rojdev K, O'Rourke M J E, Hill C, et al. In-situ strain analysis of potential habitat composites exposed to a simulated long-term lunar radiation exposure[J]. Radiation Physics and Chemistry, 2013, 84: 235-241. DOI: 10.1016/j.radphyschem.2012.05.004http://dx.doi.org/10.1016/j.radphyschem.2012.05.004.
Zimmermann J, Sadeghi M Z, Schroeder K U. The effect of γ-radiation on the mechanical properties of structural adhesive[J]. International Journal of Adhesion and Adhesives, 2019, 93: 102334. DOI: 10.1016/j.ijadhadh. 2019.01.028http://dx.doi.org/10.1016/j.ijadhadh.2019.01.028.
Hou L Y, Wu Y Y, Xiao J D, et al. Degeneration and damage mechanism of epoxy-based shape memory polymer under 170 keV vacuum proton irradiation[J]. Polymer Degradation and Stability, 2019, 166: 8-16. DOI: 10.1016/j.polymdegradstab.2019.05.017http://dx.doi.org/10.1016/j.polymdegradstab.2019.05.017.
Queiroz D P R, Fraïsse F, Fayolle B, et al. Radiochemical ageing of epoxy coating for nuclear plants[J]. Radiation Physics and Chemistry, 2010, 79(3): 362-364. DOI: 10. 1016/j.radphyschem.2009.08.034http://dx.doi.org/10.1016/j.radphyschem.2009.08.034.
Zhang D, Xing A, Li B, et al. Effects of proton and electron irradiations on the dielectric properties of epoxy/anhydride cured products[J]. Microelectronics Reliability, 2022, 138: 114745. DOI: 10.1016/j.microrel.2022. 114745http://dx.doi.org/10.1016/j.microrel.2022.114745.
李广宇, 李子东, 吉利, 等. 环氧胶黏剂与应用技术[M]. 北京: 化学工业出版社, 2007.
LI Guangyu, LI Zidong, JI Li, et al. Epoxy adhesive and application techniques[M]. Beijing: Chemical Industry Press, 2007.
陈可平, 刘文, 赵秀丽, 等. 环氧树脂辐射老化的研究进展[J]. 辐射研究与辐射工艺学报, 2022, 40(1): 010101. DOI: 10.11889/j.1000-3436.2021-0101http://dx.doi.org/10.11889/j.1000-3436.2021-0101.
CHEN Keping, LIU Wen, ZHAO Xiuli, et al. Progress in radiation aging of epoxy resins[J]. Journal of Radiation Research and Radiation Processing, 2022, 40(1): 010101. DOI: 10.11889/j.1000-3436.2021-0101http://dx.doi.org/10.11889/j.1000-3436.2021-0101.
Kacem I, Daoudi M, Dridi W, et al. Effects of neutron-gamma radiation on the free radical contents in epoxy resin: upconversion luminescence and structural stabilization[J]. Applied Physics A, 2019, 125(11): 1-9. DOI: 10.1007/s00339-019-3065-zhttp://dx.doi.org/10.1007/s00339-019-3065-z.
常乐, 张衍, 刘育建, 等. 环氧树脂的γ射线辐照损伤机理研究[J]. 热固性树脂, 2016, 31(1): 10-14. DOI: 10. 13650/j.cnki.rgxsz.2016.01.003http://dx.doi.org/10.13650/j.cnki.rgxsz.2016.01.003.
CHANG Le, ZHANG Yan, LIU Yujian, et al. Study on the damage mechanism for epoxy resin under gamma irradiation[J]. Thermosetting Resin, 2016, 31(1): 10-14. DOI: 10.13650/j.cnki.rgxsz.2016.01.003http://dx.doi.org/10.13650/j.cnki.rgxsz.2016.01.003.
Diao F Y, Zhang Y, Liu Y J, et al. γ-Ray irradiation stability and damage mechanism of glycidyl amine epoxy resin[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 383: 227-233. DOI: 10.1016/j.nimb. 2016.07.009http://dx.doi.org/10.1016/j.nimb.2016.07.009.
Ji Z Y, Zhang F, Chen H B, et al. Study on the species and stability of free radicals in bisphenol-a based epoxy resin induced by γ irradiation up to 1 000 kGy[J]. Radiation Physics and Chemistry, 2022, 197: 110220. DOI: 10.1016/j.radphyschem.2022.110220http://dx.doi.org/10.1016/j.radphyschem.2022.110220.
Chang L, Zhang Y, Liu Y J, et al. Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, 356/357: 88-93. DOI: 10. 1016/j.nimb.2015.04.062http://dx.doi.org/10.1016/j.nimb.2015.04.062.
Kilic M, Ergin Y, Karabul Y, et al. Experimental comparison of PbO and BaO addition effect on gamma ray shielding performance of epoxy polymer[J]. Avrupa Bilim Ve Teknoloji Dergisi, 2019(16): 256-266.
Bai X, Zhang C X, Zeng X L, et al. Recent progress in thermally conductive polymer/boron nitride composites by constructing three-dimensional networks[J]. Composites Communications, 2021, 24: 100650. DOI: 10.1016/j.coco.2021.100650http://dx.doi.org/10.1016/j.coco.2021.100650.
Weng Q H, Wang X B, Wang X, et al. Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications[J]. Chemical Society Reviews, 2016, 45(14): 3989-4012. DOI: 10.1039/C5CS00869Ghttp://dx.doi.org/10.1039/C5CS00869G.
Cataldo F, Iglesias-Groth S. Neutron damage of hexagonal boron nitride: h-BN[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 313(1): 261-271. DOI: 10.1007/s10967-017-5289-8http://dx.doi.org/10.1007/s10967-017-5289-8.
Jiao L M, Wang Y, Wu Z H, et al. Effect of gamma and neutron irradiation on properties of boron nitride/epoxy resin composites[J]. Polymer Degradation and Stability, 2021, 190: 109643. DOI: 10.1016/j.polymdegradstab. 2021.109643http://dx.doi.org/10.1016/j.polymdegradstab.2021.109643.
朱文刚, 姜志文, 陈洪兵, 等. γ辐射对氮化硼/环氧树脂复合材料性能的影响[J]. 辐射研究与辐射工艺学报, 2020, 38(3): 030201. DOI: 10.11889/j.1000-3436.2020.rrj.38.030201http://dx.doi.org/10.11889/j.1000-3436.2020.rrj.38.030201.
ZHU Wengang, JIANG Zhiwen, CHEN Hongbing, et al. γ-ray radiation effect on the properties of boron nitride/epoxy composites[J]. Journal of Radiation Research and Radiation Processing, 2020, 38(3): 030201. DOI: 10. 11889/j.1000-3436.2020.rrj.38.030201http://dx.doi.org/10.11889/j.1000-3436.2020.rrj.38.030201.
Wu Z X, Li J W, Huang C J, et al. Effect of gamma irradiation on the mechanical behavior, thermal properties and structure of epoxy/glass-fiber composite[J]. Journal of Nuclear Materials, 2013, 441(1/2/3): 67-72. DOI: 10. 1016/j.jnucmat.2013.05.041http://dx.doi.org/10.1016/j.jnucmat.2013.05.041.
陈平, 刘胜平, 王德中. 环氧树脂及其应用[M]. 北京: 化学工业出版社, 2011.
CHEN Ping, LIU Shengping, WANG Dezhong. Epoxy resins and their applications[M]. Beijing: Chemical Industry Press, 2011.
Rasul M G, Kiziltas A, Arfaei B, et al. 2D boron nitride nanosheets for polymer composite materials[J]. NPJ 2D Materials and Applications, 2021, 5: 56. DOI: 10.1038/s41699-021-00231-2http://dx.doi.org/10.1038/s41699-021-00231-2.
Soga K, Saito T, Kawaguchi T, et al. Percolation effect on thermal conductivity of filler-dispersed polymer composites[J]. Journal of Thermal Science and Technology, 2017, 12(1): JTST0013. DOI: 10.1299/jtst. 2017jtst0013http://dx.doi.org/10.1299/jtst.2017jtst0013.
Donnay M, Tzavalas S, Logakis E. Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength[J]. Composites Science and Technology, 2015, 110: 152-158. DOI: 10.1016/j.compscitech.2015.02.006http://dx.doi.org/10.1016/j.compscitech.2015.02.006.
王佳健, 姜志文, 葛志青, 等. 六方氮化硼/丙烯酸酯橡胶复合材料的制备、性能及γ射线辐射效应[J]. 辐射研究与辐射工艺学报, 2022, 40(6): 060201. DOI: 10. 11889/j.1000-3436.2022-0056http://dx.doi.org/10.11889/j.1000-3436.2022-0056.
WANG Jiajian, JIANG Zhiwen, GE Zhiqing, et al. Hexagonal boron nitride/acrylic rubber composites: preparation, thermal and mechanical properties, and effect of γ-radiation[J]. Journal of Radiation Research and Radiation Processing, 2022, 40(6): 060201. DOI: 10. 11889/j.1000-3436.2022-0056http://dx.doi.org/10.11889/j.1000-3436.2022-0056.
0
Views
3
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution