1.湖南省农业科学院/湖南省核农学与航天育种研究所 长沙 410125
DENG Ming (male) was born in March 1988, and graduated from Hunan Agricultural University in 2015 with a major in environmental engineering. Now he is an assistant professor engaging in the research on efficient utilization of biomass
WANG Keqin, professor, E-mail: wkq6412@163.com
WU Xiaofen, associate professor, E-mail: wxf334@163.com
扫 描 看 全 文
邓明, 陈亮, 齐慧, 等. 60Co-γ射线处理油菜秸秆降解产物分析及其对酶解发酵的影响[J]. 辐射研究与辐射工艺学报, 2023, 41(06): 060401.
DENG Ming, CHEN Liang, QI Hui, et al. Degradation products analysis of rapeseed straw pretreated with 60Co-γ-ray irradiation and its effect on enzymatic hydrolysis and fermentation[J]. Journal of Radiation Research and Radiation Processing, 2023, 41(6): 060401.
邓明, 陈亮, 齐慧, 等. 60Co-γ射线处理油菜秸秆降解产物分析及其对酶解发酵的影响[J]. 辐射研究与辐射工艺学报, 2023, 41(06): 060401. DOI: 10.11889/j.1000-3436.2023-0043.
DENG Ming, CHEN Liang, QI Hui, et al. Degradation products analysis of rapeseed straw pretreated with 60Co-γ-ray irradiation and its effect on enzymatic hydrolysis and fermentation[J]. Journal of Radiation Research and Radiation Processing, 2023, 41(6): 060401. DOI: 10.11889/j.1000-3436.2023-0043.
本文以油菜秸秆为原料,研究不同吸收剂量,60,Co-γ辐照处理后样品中木质纤维素组分、降解产物种类和含量的变化,并对其酶解和分步糖化发酵特性进行评价。研究结果表明:随着吸收剂量的升高,油菜秸秆中纤维素、木聚糖和木质素含量降低,水溶性组分总量逐渐增加,水浸提液pH逐渐降低。降解产物中4种小分子脂肪酸总量随辐照吸收剂量的升高逐渐增加,1 000 kGy处理后达到最大值9.25 mg/g;9种小分子芳香类降解产物总量呈先增后降趋势,800 kGy时达到最大值0.22 mg/g。油菜秸秆酶解纤维素转化率和葡萄糖浓度随着吸收剂量的升高逐渐增加;随着底物浓度的增加,纤维素转化率逐渐降低,酶解液中葡萄糖浓度逐渐升高;15%底物浓度下800 kGy辐照处理油菜秸秆酶解纤维素转化率为57.55%,分步糖化发酵乙醇转化率低于10%。辐照结合水浸提处理显著提高油菜秸秆酶解发酵效率,水浸提后800 kGy辐照油菜秸秆在15%底物浓度酶解纤维素转化率和葡萄糖浓度分别为71.62%和40.38 mg/mL,分步发酵48 h后乙醇转化率达到64.00%,且发酵液中葡萄糖被全部消耗。
Rapeseed straw was used as raw material to investigate the changes in the lignocellulosic components, types and contents of degradation products after different absorbed doses of ,60,Co-γ-ray irradiation, and the enzymatic hydrolysis and fermentation characteristics were evaluated in this research. The results showed that the contents of cellulose, xylan and lignin decreased, the total amount of water-soluble components increased, and the pH of water extract gradually decreased in the rapeseed straw with the increase of irradiation absorbed dose. The total amount of four types of small molecular fatty acids in the degradation products of rapeseed straw gradually increased with the irradiation absorbed dose increasing, reaching a maximum of 9.25 mg/g after 1 000 kGy irradiated. The total amount of nine types of small molecular aromatic degradation products first increased and then decreased, reaching a maximum of 0.22 mg/g in 800 kGy irradiated rapeseed straw. The cellulose conversion rate and glucose concentration of rapeseed straw by enzymatic hydrolysis increased with the increase of irradiation absorbed dose. The cellulose conversion rate decreased and the glucose concentration in enzymatic hydrolysate gradually increased with increasing substrate concentration. The cellulose conversion rate for enzymatic hydrolysis was 57.55% and ethanol conversion rate was less than 10% of 800 kGy irradiated rapeseed straw at 15% substrate concentration in separate hydrolysis and fermentation. Irradiation combined with water extraction significantly improved the enzymatic and fermentation efficiency of rapeseed straw. The cellulose conversion rate and glucose concentration for enzymatic hydrolysis were 71.62% and 40.38 mg/mL, respectively, the ethanol conversion rate was 64.00% after 48 h of separate fermentation, and the glucose in fermentation broth was completely consumed for 800 kGy irradiated rapeseed straw after water extraction at 15% substrate concentration.
60Co-γ射线辐照油菜秸秆降解产物酶解分步糖化发酵
60Co-γ-ray irradiationRapeseed strawDegradation productsEnzymatic hydrolysisSeparate hydrolysis and fermentation
裴岩杰. 油菜秸秆细胞壁及其降解转化生物乙醇机制研究[D]. 武汉: 华中农业大学, 2016: 75.
PEI Yanjie. Analysis of cell wall composition, biomass digestibility and bioethanol conversion in rapeseed straw[D]. Wuhan: Huazhong Agricultural University, 2016: 75.
张春艳. 辐照预处理对油菜秸秆降解产糖效果的影响及机理研究[D]. 长沙: 湖南农业大学, 2015: 134.
ZHANG Chunyan. Studies on the effect of sugar production and mechanism of hydrolysis of irradiation pretreated rapeseed straw[D]. Changsha: Hunan Agricultural University, 2015: 134.
Chen H Y, Liu J B, Chang X, et al. A review on the pretreatment of lignocellulose for high-value chemicals[J]. Fuel Processing Technology, 2017, 160: 196-206. DOI: 10.1016/j.fuproc.2016.12.007http://dx.doi.org/10.1016/j.fuproc.2016.12.007.
Bala A J, Singh B. Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production[J]. Renewable Energy, 2019, 130: 12-24. DOI: 10.1016/j.renene.2018.06.033http://dx.doi.org/10.1016/j.renene.2018.06.033.
Rastogi M, Shrivastava S. Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 330-340. DOI: 10.1016/j.rser.2017.05.225http://dx.doi.org/10.1016/j.rser.2017.05.225.
Kuglarz M, Alvarado-Morales M, Dąbkowska K, et al. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment[J]. Bioresource Technology, 2018, 265: 191-199. DOI: 10.1016/j.biortech.2018.05.099http://dx.doi.org/10.1016/j.biortech.2018.05.099.
Tsegaye B, Balomajumder C, Roy P. Optimization of microwave and NaOH pretreatments of wheat straw for enhancing biofuel yield[J]. Energy Conversion and Management, 2019, 186: 82-92. DOI: 10.1016/j.enconman.2019.02.049http://dx.doi.org/10.1016/j.enconman.2019.02.049.
Prasad R K, Chatterjee S, Mazumder P B, et al. Bioethanol production from waste lignocelluloses: a review on microbial degradation potential[J]. Chemosphere, 2019, 231: 588-606. DOI: 10.1016/j.chemosphere.2019.05.142http://dx.doi.org/10.1016/j.chemosphere.2019.05.142.
Trinh L T P, Lee Y J, Park C S, et al. Aqueous acidified ionic liquid pretreatment for bioethanol production and concentration of produced ethanol by pervaporation[J]. Journal of Industrial and Engineering Chemistry, 2019, 69: 57-65. DOI: 10.1016/j.jiec.2018.09.008http://dx.doi.org/10.1016/j.jiec.2018.09.008.
Chen J P, Wang L Y, Su X J, et al. Structure, morphology, thermostability and irradiation-mediated degradation fractions of hemicellulose treated with γ-irradiation[J]. Waste and Biomass Valorization, 2016, 7(6): 1415-1425. DOI: 10.1007/s12649-016-9489-1http://dx.doi.org/10.1007/s12649-016-9489-1.
陈亮, 苏小军, 陈静萍, 等. 辐照预处理水稻秸秆在高底物浓度下的酶解[J]. 林产化学与工业, 2015, 35(2): 129-134. DOI: 10.3969/j.issn.0253-2417.2015.02.020http://dx.doi.org/10.3969/j.issn.0253-2417.2015.02.020.
CHEN Liang, SU Xiaojun, CHEN Jingping, et al. Enzymatic hydrolysis of rice straw pretreated by irradiation at high solid loading[J]. Chemistry and Industry of Forest Products, 2015, 35(2): 129-134. DOI: 10.3969/j.issn.0253-2417.2015.02.020http://dx.doi.org/10.3969/j.issn.0253-2417.2015.02.020.
Liu Y, Guo L J, Wang L Y, et al. Irradiation pretreatment facilitates the achievement of high total sugars concentration from lignocellulose biomass[J]. Bioresource Technology, 2017, 232: 270-277. DOI: 10. 1016/j.biortech.2017.01.061http://dx.doi.org/10.1016/j.biortech.2017.01.061.
Zhang C Y, Su X J, Xiong X Y, et al. 60Co-γ radiation-induced changes in the physical and chemical properties of rapeseed straw[J]. Biomass and Bioenergy, 2016, 85: 207-214. DOI: 10.1016/j.biombioe.2015.11.022http://dx.doi.org/10.1016/j.biombioe.2015.11.022.
杨莉, 谭丽萍, 刘同军. 木质纤维素预处理抑制物产生及脱除方法的研究进展[J]. 生物工程学报, 2021, 37(1): 15-29. DOI: 10.13345/j.cjb.200221http://dx.doi.org/10.13345/j.cjb.200221.
YANG Li, TAN Liping, LIU Tongjun. Progress in detoxification of inhibitors generated during lignocellulose pretreatment[J]. Chinese Journal of Biotechnology, 2021, 37(1): 15-29. DOI: 10.13345/j.cjb. 200221http://dx.doi.org/10.13345/j.cjb.200221.
Li Q M, Li X J, Jiang Y L, et al. Analysis of degradation products and structural characterization of giant reed and Chinese silvergrass pretreated by 60Co-γ irradiation[J]. Industrial Crops and Products, 2016, 83: 307-315. DOI: 10.1016/j.indcrop.2016.01.024http://dx.doi.org/10.1016/j.indcrop.2016.01.024.
张春艳, 谭兴和, 熊兴耀, 等. 油菜秸秆60Co-γ辐照降解产物分析[J]. 湖南农业大学学报(自然科学版), 2017, 43(1): 92-97. DOI: 10.13331/j.cnki.jhau.2017.01.016http://dx.doi.org/10.13331/j.cnki.jhau.2017.01.016.
ZHANG Chunyan, TAN Xinghe, XIONG Xingyao, et al. Analysis of degradation products of rapeseed straw irradiated with 60Co-γ[J]. Journal of Hunan Agricultural University (Natural Sciences), 2017, 43(1): 92-97. DOI: 10.13331/j.cnki.jhau.2017.01.016http://dx.doi.org/10.13331/j.cnki.jhau.2017.01.016.
Liu Y, Zhou H, Wang L Y, et al. Improving Saccharomyces cerevisiae growth against lignocellulose-derived inhibitors as well as maximizing ethanol production by a combination proposal of γ-irradiation pretreatment with in situ detoxification[J]. Chemical Engineering Journal, 2016, 287: 302-312. DOI: 10.1016/j.cej.2015.10.086http://dx.doi.org/10.1016/j.cej.2015.10.086.
武小芬, 雷舒婷, 储奕, 等. 5 MeV电子加速器辐照对甲酸循环分离南荻木质纤维素的影响[J]. 辐射研究与辐射工艺学报, 2022, 40(2): 020402. DOI: 10.11889/j.1000-3436.2021-0210http://dx.doi.org/10.11889/j.1000-3436.2021-0210.
WU Xiaofen, LEI Shuting, CHU Yi, et al. Effects of 5-MeV electron accelerator irradiation on cycling separation of lignocellulose from Triarrhena lutarioriparia by formic acid[J]. Journal of Radiation Research and Radiation Processing, 2022, 40(2): 020402. DOI: 10. 11889/j.1000-3436.2021-0210http://dx.doi.org/10.11889/j.1000-3436.2021-0210.
Chen S F, Mowery R A, Castleberry V A, et al. High-performance liquid chromatography method for simultaneous determination of aliphatic acid, aromatic acid and neutral degradation products in biomass pretreatment hydrolysates[J]. Journal of Chromatography A, 2006, 1104(1/2): 54-61. DOI: 10.1016/j.chroma.2005. 11.136http://dx.doi.org/10.1016/j.chroma.2005.11.136.
武小芬, 陈亮, 齐慧, 等. 辐照协同甲酸分离油茶壳中纤维素、木质素和木糖的工艺研究[J]. 核农学报, 2020, 34(9): 1975-1982. DOI: 10.11869/j.issn.100-8551.2020.09. 1975http://dx.doi.org/10.11869/j.issn.100-8551.2020.09.1975.
WU Xiaofen, CHEN Liang, QI Hui, et al. Separation process of cellulose, lignin and xylose from camellia oleifera shell by irradiation and formic acid[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(9): 1975-1982. DOI: 10.11869/j.issn.100-8551.2020.09.1975http://dx.doi.org/10.11869/j.issn.100-8551.2020.09.1975.
Wu X F, Chen L, He W Q, et al. Characterize the physicochemical structure and enzymatic efficiency of agricultural residues exposed to γ-irradiation pretreatment[J]. Industrial Crops and Products, 2020, 150: 112228. DOI: 10.1016/j.indcrop.2020.112228http://dx.doi.org/10.1016/j.indcrop.2020.112228.
陈亮, 武小芬, 陈静萍, 等. γ射线辐照降解微晶纤维素的研究[J]. 核农学报, 2016, 30(9): 1731-1737. DOI: 10. 11869/j.issn.100-8551.2016.09.1731http://dx.doi.org/10.11869/j.issn.100-8551.2016.09.1731.
CHEN Liang, WU Xiaofen, CHEN Jingping, et al. Study on the degradation of microcrystalline cellulose irradiated by γ rays[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(9): 1731-1737. DOI: 10.11869/j.issn.100-8551. 2016.09.1731http://dx.doi.org/10.11869/j.issn.100-8551.2016.09.1731.
武小芬, 陈亮, 陈静萍, 等 γ射线辐照降解木聚糖的机理研究[J]. 核农学报, 2017, 31(5): 889-898. DOI: 10.11869/j.issn.100-8551.2017.05.0889http://dx.doi.org/10.11869/j.issn.100-8551.2017.05.0889.
WU Xiaofen, CHEN Liang, CHEN Jingping, et al. Study on the degradation mechanism of xylose by gamma rays irradiation[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(5): 889-898. DOI: 10.11869/j.issn.100-8551. 2017.05.0889http://dx.doi.org/10.11869/j.issn.100-8551.2017.05.0889.
Wu X F, Chen L, Chen J P, et al. The effect of 60Co γ-irradiation on the structure and thermostability of alkaline lignin and its irradiation derived degradation products[J]. Waste and Biomass Valorization, 2019, 10(10): 3025-3035. DOI: 10.1007/s12649-018-0300-3http://dx.doi.org/10.1007/s12649-018-0300-3.
Zhang C Y, Su X J, Hu Q L, et al. Effect of 60Co-γ irradiation on the microstructure and enzymatic hydrolysis of rapeseed straw[J]. Cellulose Chemistry and Technology, 2016, 50(9/10): 973-981.
Lee B M, Jeun J P, Kang P H. Enhanced enzymatic hydrolysis of kenaf core using irradiation and dilute acid[J]. Radiation Physics and Chemistry, 2017, 130: 216-220. DOI: 10.1016/j.radphyschem.2016.08.026http://dx.doi.org/10.1016/j.radphyschem.2016.08.026.
Su X J, Zhang C Y, Li W J, et al. Radiation-induced structural changes of miscanthus biomass[J]. Applied Sciences, 2020, 10(3): 1130-1142. DOI: 10.3390/app10031130http://dx.doi.org/10.3390/app10031130.
Fei X H, Jia W B, Wang J Q, et al. Study on enzymatic hydrolysis efficiency and physicochemical properties of cellulose and lignocellulose after pretreatment with electron beam irradiation[J]. International Journal of Biological Macromolecules, 2020, 145: 733-739. DOI: 10.1016/j.ijbiomac.2019.12.232http://dx.doi.org/10.1016/j.ijbiomac.2019.12.232.
Climent Barba F, Rodríguez-Jasso R M, Sukumaran R Ket al. High-solids loading processing for an integrated lignocellulosic biorefinery: effects of transport phenomena and rheology―a review[J]. Bioresource Technology, 2022, 351: 127044. DOI: 10.1016/j.biortech. 2022.127044http://dx.doi.org/10.1016/j.biortech.2022.127044.
Saravanakumar T, Park H S, Mo A Y, et al. Detoxification of furanic and phenolic lignocellulose derived inhibitors of yeast using laccase immobilized on bacterial cellulosic nanofibers[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 134: 196-205. DOI: 10.1016/j.molcatb. 2016.11.006http://dx.doi.org/10.1016/j.molcatb.2016.11.006.
张勇, 郭栋豪, 王克勤, 等. γ射线辐照预处理玉米秸秆发酵产乙醇的研究[J]. 中国酿造, 2018, 37(9): 58-61. DOI: 10.11882/j.issn.0254-5071.2018.09.012http://dx.doi.org/10.11882/j.issn.0254-5071.2018.09.012.
ZHANG Yong, GUO Donghao, WANG Keqin, et al. Fermentation for ethanol production with γ ray irradiation-pretreated corn straw[J]. China Brewing, 2018, 37(9): 58-61. DOI: 10.11882/j.issn.0254-5071. 2018.09.012http://dx.doi.org/10.11882/j.issn.0254-5071.2018.09.012.
0
Views
3
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution