1.中国科学院上海应用物理研究所 上海 201800
2.中国科学院大学 北京 100049
3.上海科技大学物质科学与技术学院 上海 201210
FENG Xinxin (female) was born in April 1995, and obtained her master's degree from University of Chinese Academy of Sciences in 2020
LI Rong, associated professor, E-mail: lirong@sinap.ac.cn
WU Guozhong, professor, E-mail: wuguozhong@sinap.ac.cn
扫 描 看 全 文
冯鑫鑫, 毛选之, 张明星, 等. 辐射接枝改性制备功能无纺布用于酸性溶液中Au(Ⅲ)的选择性吸附[J]. 辐射研究与辐射工艺学报, 2023, 41(06): 060201.
FENG Xinxin, MAO Xuanzhi, ZHANG Mingxing, et al. Synthesis of functional nonwoven fabric using radiation grafting for the selective adsorption of Au(Ⅲ) in an acidic solution[J]. Journal of Radiation Research and Radiation Processing, 2023, 41(6): 060201.
冯鑫鑫, 毛选之, 张明星, 等. 辐射接枝改性制备功能无纺布用于酸性溶液中Au(Ⅲ)的选择性吸附[J]. 辐射研究与辐射工艺学报, 2023, 41(06): 060201. DOI: 10.11889/j.1000-3436.2023-0071.
FENG Xinxin, MAO Xuanzhi, ZHANG Mingxing, et al. Synthesis of functional nonwoven fabric using radiation grafting for the selective adsorption of Au(Ⅲ) in an acidic solution[J]. Journal of Radiation Research and Radiation Processing, 2023, 41(6): 060201. DOI: 10.11889/j.1000-3436.2023-0071.
为实现酸性溶液中Au(Ⅲ)的选择性回收,本研究以聚乙烯/聚丙烯(PE/PP)皮芯结构无纺布为基材,通过丙烯腈与丙烯酸的辐射接枝以及硫化钠改性制备得到含硫代酰胺基和羧基的双官能化无纺布吸附材料。通过红外光谱、热重分析、扫描电镜、能谱分析、接触角测定、X射线光电子能谱和X射线衍射等测试对改性无纺布的结构与性能进行表征。通过批量吸附试验对改性无纺布的吸附性能进行测定。结果表明:改性无纺布在较宽pH范围(2~7)内具有良好的Au(Ⅲ)吸附能力;在共存金属离子体系中具备良好的Au(Ⅲ)选择性,选择系数介于55.00~2 429.17,金回收率可达98.5%;改性无纺布的饱和Au(Ⅲ)吸附容量为133.91 mg/g,吸附行为符合准二级动力学和Langmuir等温吸附模型;Au(Ⅲ)在吸附中可被还原为以晶体形式存在的Au(0);通过对吸附后样品的简单高温处理可去除吸附材料,实现金的回收。
Herein, a bifunctional nonwoven fabric sorbent containing thioamide and carboxyl groups was synthesized via radiation grafting of acrylonitrile and acrylic acid, followed by modification with sodium sulfide, to selectively recover Au(Ⅲ) from the acidic solution. A polyethylene/polypropylene skin-core-structured nonwoven fabric was used as the substrate. The structure and properties of the sorbent were characterized using infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, energy dispersive spectroscopy, contact angle measurements, X-ray photoelectron spectroscopy, and X-ray diffraction. The adsorption performance of the sorbent was determined through batch adsorption tests. The results indicated that the sorbent exhibited excellent Au(Ⅲ) adsorption capacity over a wide pH range (2-7) and demonstrated good selectivity for Au(Ⅲ) in the presence of coexisting metal ions, with selectivity coefficients ranging from 55.00 to 2 429.17 and a gold recovery ratio of 98.5%. The adsorption followed the pseudo-second-order kinetic and Langmuir isotherm models, with an Au(Ⅲ) saturation adsorption capacity of 133.91 mg/g. Au(Ⅲ) could be reduced to crystalline Au(0) during the adsorption process. Moreover, the modified nonwoven fabric could be effectively removed via simple high-temperature treatment, facilitating Au recovery.
辐射接枝Au(Ⅲ)吸附聚乙烯/聚丙烯无纺布
Radiation graftingAu(Ⅲ)AdsorptionPolyethylene/polypropylene nonwoven fabric
He Y L, Wang M L, Mao X Z, et al. Selective recovery of gold from e-waste with 3D hierarchical porous amidoximated fabrics and its application in the reduction of 4-nitrophenol[J]. Radiation Physics and Chemistry, 2022, 194: 110006. DOI: 10.1016/j.radphyschem.2022. 110006http://dx.doi.org/10.1016/j.radphyschem.2022.110006.
Gurung M, Adhikari B B, Kawakita H, et al. Selective recovery of precious metals from acidic leach liquor of circuit boards of spent mobile phones using chemically modified persimmon tannin gel[J]. Industrial & Engineering Chemistry Research, 2012, 51(37): 11901-11913. DOI: 10.1021/ie3009023http://dx.doi.org/10.1021/ie3009023.
Syed S. Recovery of gold from secondary sources—a review[J]. Hydrometallurgy, 2012, 115/116: 30-51. DOI: 10.1016/j.hydromet.2011.12.012http://dx.doi.org/10.1016/j.hydromet.2011.12.012.
Choudhary B C, Paul D, Borse A U, et al. Surface functionalized biomass for adsorption and recovery of gold from electronic scrap and refinery wastewater[J]. Separation and Purification Technology, 2018, 195: 260-270. DOI: 10.1016/j.seppur.2017.12.024http://dx.doi.org/10.1016/j.seppur.2017.12.024.
Lam K F, Yeung K L, McKay G. An investigation of gold adsorption from a binary mixture with selective mesoporous silica adsorbents[J]. The Journal of Physical Chemistry B, 2006, 110(5): 2187-2194. DOI: 10.1021/jp055577nhttp://dx.doi.org/10.1021/jp055577n.
Jeffrey M I, Hewitt D M, Dai X, et al. Ion exchange adsorption and elution for recovering gold thiosulfate from leach solutions[J]. Hydrometallurgy, 2010, 100(3/4): 136-143. DOI: 10.1016/j.hydromet.2009.11.003http://dx.doi.org/10.1016/j.hydromet.2009.11.003.
Iglesias M, Anticó E, Salvadó V. Recovery of palladium(II) and gold(III) from diluted liquors using the resin duolite GT-73[J]. Analytica Chimica Acta, 1999, 381(1): 61-67. DOI: 10.1016/S0003-2670(98)00707-7http://dx.doi.org/10.1016/S0003-2670(98)00707-7.
Ma T T, Zhao R, Li Z N, et al. Efficient gold recovery from E-waste via a chelate-containing porous aromatic framework[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30474-30482. DOI: 10.1021/acsami.0c08352http://dx.doi.org/10.1021/acsami.0c08352.
Guo J K, Fan X H, Li Y P, et al. Mechanism of selective gold adsorption on ion-imprinted chitosan resin modified by thiourea[J]. Journal of Hazardous Materials, 2021, 415: 125617. DOI: 10.1016/j.jhazmat.2021.125617http://dx.doi.org/10.1016/j.jhazmat.2021.125617.
Yang X, Pan Q, Ao Y Y, et al. Facile preparation of L-cysteine-modified cellulose microspheres as a low-cost adsorbent for selective and efficient adsorption of Au(III) from the aqueous solution[J]. Environmental Science and Pollution Research, 2020, 27(30): 38334-38343. DOI: 10.1007/s11356-020-09789-8http://dx.doi.org/10.1007/s11356-020-09789-8.
Huang Z, Zhao M H, Wang S X, et al. Selective recovery of gold ions in aqueous solutions by a novel trithiocyanuric-Zr based MOFs adsorbent[J]. Journal of Molecular Liquids, 2020, 298: 112090. DOI: 10.1016/j.molliq.2019.112090http://dx.doi.org/10.1016/j.molliq.2019.112090.
Chen Z X, Wang D X, Feng S Y, et al. An imidazole thione-modified polyhedral oligomeric silsesquioxane for selective detection and adsorptive recovery of Au(III) from aqueous solutions[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23592-23605. DOI: 10.1021/acsami.1c01965http://dx.doi.org/10.1021/acsami.1c01965.
Li X, Zhang C C, Zhao R, et al. Efficient adsorption of gold ions from aqueous systems with thioamide-group chelating nanofiber membranes[J]. Chemical Engineering Journal, 2013, 229: 420-428. DOI: 10.1016/j.cej.2013. 06.022http://dx.doi.org/10.1016/j.cej.2013.06.022.
Deng S, Zhang G S, Liang S A, et al. Microwave assisted preparation of thio-functionalized polyacrylonitrile fiber for the selective and enhanced adsorption of mercury and cadmium from water[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6054-6063. DOI: 10.1021/acssuschemeng.7b00917http://dx.doi.org/10.1021/acssuschemeng.7b00917.
Wang K J, Chen K, Xiang L M, et al. Relationship between Hg(II) adsorption property and functional group of different thioamide chelating resins[J]. Separation and Purification Technology, 2022, 292: 121044. DOI: 10.1016/j.seppur.2022.121044http://dx.doi.org/10.1016/j.seppur.2022.121044.
Xing Z, Hu J T, Wang M H, et al. Properties and evaluation of amidoxime-based UHMWPE fibrous adsorbent for extraction of uranium from seawater[J]. Science China Chemistry, 2013, 56(11): 1504-1509. DOI: 10.1007/s11426-013-5002-xhttp://dx.doi.org/10.1007/s11426-013-5002-x.
Sivy G T, Coleman M M. Fourier transform IR studies of the degradation of polyacrylonitrile copolymers—IV[J]. Carbon, 1981, 19(2): 137-139. DOI: 10.1016/0008-6223(81)90121-4http://dx.doi.org/10.1016/0008-6223(81)90121-4.
Machesky M L, Andrade W O, Rose A W. Adsorption of gold(III)-chloride and gold(I)-thiosulfate anions by goethite[J]. Geochimica et Cosmochimica Acta, 1991, 55(3): 769-776. DOI: 10.1016/0016-7037(91)90340-Bhttp://dx.doi.org/10.1016/0016-7037(91)90340-B.
Revellame E D, Fortela D L, Sharp W, et al. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: a review[J]. Cleaner Engineering and Technology, 2020, 1: 100032. DOI: 10.1016/j.clet. 2020.100032http://dx.doi.org/10.1016/j.clet.2020.100032.
Chen X J. Modeling of experimental adsorption isotherm data[J]. Information, 2015, 6(1): 14-22. DOI: 10.3390/info6010014http://dx.doi.org/10.3390/info6010014.
李光珍, 高乾宏, 胡江涛, 等. 含有季铵盐的超高分子量聚乙烯纤维对 Au(III)的吸附效应[J]. 辐射研究与辐射工艺学报, 2016, 34(3): 030301. DOI: 10.11889/j.1000-3436.2016.rrj.34.030301http://dx.doi.org/10.11889/j.1000-3436.2016.rrj.34.030301.
LI Guangzhen, GAO Qianhong, HU Jiangtao, et al. Adsorption effects of quaternary ammonium-based ultrahigh molecular weight polyethylene fiber on Au(III) ions[J]. Journal of Radiation Research and Radiation Processing, 2016, 34(3): 030301. DOI: 10.11889/j.1000-3436.2016.rrj.34.030301http://dx.doi.org/10.11889/j.1000-3436.2016.rrj.34.030301.
Liu J D, Jin C X, Wang C. Hyperbranched thiourea-grafted electrospun polyacrylonitrile fibers for efficient and selective gold recovery[J]. Journal of Colloid and Interface Science, 2020, 561: 449-458. DOI: 10.1016/j.jcis.2019.11.016http://dx.doi.org/10.1016/j.jcis.2019.11.016.
Zhang M X, Chen J C, Wang M L, et al. Electron beam-induced preparation of AIE non-woven fabric with excellent fluorescence durability[J]. Applied Surface Science, 2021, 541: 148382. DOI: 10.1016/j.apsusc. 2020.148382http://dx.doi.org/10.1016/j.apsusc.2020.148382.
Liu C P, Mao Y L, Yang Y L, et al. Modification assisted Cu2O/MCM-41 nanoarchitecture toward efficient recovery of Au (III)[J]. Chemical Engineering Journal, 2022, 448: 137651. DOI: 10.1016/j.cej.2022.137651http://dx.doi.org/10.1016/j.cej.2022.137651.
0
Views
1
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution