1.中国科学院上海应用物理研究所 嘉定园区 上海 201800
2.中国科学院大学 北京 100049
[ "张学强,男,1990年10月出生,2011年毕业于内蒙古大学,目前在中国科学院上海应用物理研究所攻读博士学位,无机化学专业,E-mail:zhangxueqiang@sinap.ac.cn", "ZHANG Xueqiang (male) was born in October 1990 and graduated from Inner Mongolia University in 2011. Now he is adoctoral candidate in inorganic chemistry at Shanghai Institute of Applied Physics, CAS, E-mail:zhangxueqiang@sinap.ac.cn" ]
张益,研究员,E-mail:zhangyi@sinap.ac.cn ZHANG Yi, professor, E-mail:zhangyi@sinap.ac.cn
扫 描 看 全 文
张学强, 胡修源, 雷豪志, 等. 肌动蛋白在不同衬底上的组装[J]. 辐射研究与辐射工艺学报, 2016,34(4):51-56.
Xueqiang ZHANG, Xiuyuan HU, Haozhi LEI, et al. Study on the actin assembly on different substrates[J]. Journal of Radiation Research and Radiation Processing, 2016,34(4):51-56.
张学强, 胡修源, 雷豪志, 等. 肌动蛋白在不同衬底上的组装[J]. 辐射研究与辐射工艺学报, 2016,34(4):51-56. DOI: 10.11889/j.1000-3436.2016.rrj.34.040701.
Xueqiang ZHANG, Xiuyuan HU, Haozhi LEI, et al. Study on the actin assembly on different substrates[J]. Journal of Radiation Research and Radiation Processing, 2016,34(4):51-56. DOI: 10.11889/j.1000-3436.2016.rrj.34.040701.
采用兔骨骼肌Actin作为研究对象,通过搭建原子力显微镜(Atomic force microscope,AFM)液相实时进样装置观察并对比G-actin在不同衬底上的组装过程。实验中发现,Actin在云母衬底上组装时形成较少的成核位点,然后组装成长达几十微米的纤维;而在带有正电荷的磷脂膜(DPPC:DPTAP=4:1)衬底上则快速大量地成核,组装形成较短的纤维。成像时所用的机械力应≤50 pN,所用的衬底应带有一定的正电荷。研究结果为构建Actin轨道上的纳米分子马达运输系统提供了依据。
The assembly processes of actin on mica substrate and lipid membrane by real time imaging of atomic force microscope (AFM) and laser scanning confocal microscope were studied. It was found that on the bare mica substrate, the small amount of G-actin nucleating points formed and subsequently self-assembled into long actin filaments with lengths up to tens of micro-meters. While on the positively-charged lipid membrane (DPPC:DPTAP=4:1), large amounts of nucleating points quickly formed, leading to the formation of relatively shorter filaments. The proposed optimum condition for exploring actin assembly process with AFM ,in vitro, is positively-charged substrates should be used while the AFM imaging force should be lower than 50 pN. These results laid foundation for construction of micro- and nano-scale transport systems based on actin.
原子力显微镜肌动蛋白自组装分子马达
Atomic force microscope (AFM)ActinSelf-assemblyMolecular motor
N Mounier , J C Sparrow . Structural comparisons of muscle and nonmuscle actins give insights into the evolution of their functional differences . Journal of Molecular Evolution , 1997 . 44 (1 ):89 -97 . DOI:10.1007/Pl00006125http://doi.org/10.1007/Pl00006125 .
J B Moseley , B L Goode . The yeast actin cytoskeleton:from cellular function to biochemical mechanism . Microbiology and Molecular Biology Reviews , 2006 . 70 (3 ):605 -645 . DOI:10.1128/MMBR.00013-06http://doi.org/10.1128/MMBR.00013-06 .
Cooper G M. Structure and organization of actin filaments[M]. The Cell:A Molecular Approach. 2nd edition. Sunderland (MA):Sinauer Associates, 2000.
S Sharma , H Zhu , E E Grintsevich , 等 . Correlative nanoscale imaging of actin filaments and their complexes . Nanoscale , 2013 . 5 (13 ):5692 -5702 . DOI:10.1039/c3nr01039bhttp://doi.org/10.1039/c3nr01039b .
G C Wong , J X Tang , A Lin , 等 . Hierarchical self-assembly of F-actin and cationic lipid complexes:stacked three-layer tubule networks . Science , 2000 . 288 (5473 ):2035 -2039 . DOI:10.1126/science.288.5473.2035http://doi.org/10.1126/science.288.5473.2035 .
K C Holmes , D Popp , W Gebhard , 等 . Atomic model of the actin filament . Nature , 1990 . 347 (6288 ):44 -49 . DOI:10.1038/347044a0http://doi.org/10.1038/347044a0 .
H Wang , R C Robinson , L D Burtnick . The structure of native G-actin . Cytoskeleton , 2010 . 67 (7 ):456 -465 . DOI:10.1002/cm.20458http://doi.org/10.1002/cm.20458 .
Der Ecken J Von , M Müller , W Lehman , 等 . Structure of the F-actin-tropomyosin complex . Nature , 2015 . 519 (7541 ):114 -117 . DOI:10.1038/nature14033http://doi.org/10.1038/nature14033 .
T D Pollard , G G Borisy . Cellular motility driven by assembly and disassembly of actin filaments . Cell , 2003 . 112 (4 ):453 -465 . DOI:10.1016/S0092-8674(03)00120-Xhttp://doi.org/10.1016/S0092-8674(03)00120-X .
I Fujiwara , S Takahashi , H Tadakuma , 等 . Microscopic analysis of polymerization dynamics with individual actin filaments . Nature Cell Biology , 2002 . 4 (1 ):666 -673 . DOI:10.1038/ncb841http://doi.org/10.1038/ncb841 .
A Wegner . Head to tail polymerization of actin . Journal of Molecular Biology , 1976 . 108 (1 ):139 -150 . DOI:10.1016/S0022-2836(76)80100-3http://doi.org/10.1016/S0022-2836(76)80100-3 .
M J Unterberger , G A Holzapfel . Advances in the mechanical modeling of filamentous actin and its cross-linked networks on multiple scales . Biomechanics and Modeling in Mechanobiology , 2014 . 13 (6 ):1155 -1174 . DOI:10.1007/s10237-014-0578-4http://doi.org/10.1007/s10237-014-0578-4 .
C A Schoenenberger , H G Mannherz , B M Jockusch . Actin:From structural plasticity to functional diversity . European Journal of Cell Biology , 2011 . 90 (10 ):797 -804 . DOI:10.1016/j.ejcb.2011.05.002http://doi.org/10.1016/j.ejcb.2011.05.002 .
J A Cooper . The Role of Actin Polymerization in Cell Motility . Annual Review of Physiology , 1991 . 53 (1 ):585 -605 . DOI:10.1146/annurev.physiol.53.1.585http://doi.org/10.1146/annurev.physiol.53.1.585 .
G Salbreux , G Charras , E Paluch . Actin cortex mechanics and cellular morphogenesis . Trends in Cell Biology , 2012 . 22 (10 ):536 -545 . DOI:10.1016/j.tcb.2012.07.001http://doi.org/10.1016/j.tcb.2012.07.001 .
C Veigel , C F Schmidt . Moving into the cell:single-molecule studies of molecular motors in complex environments . Nature Reviews. Molecular Cell Biology , 2011 . 12 (3 ):163 -176 . DOI:10.1038/nrm3062http://doi.org/10.1038/nrm3062 .
K Xu , H P Babcock , X Zhuang . Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton . Nature Methods , 2012 . 9 (2 ):185 -188 . DOI:10.1038/nmeth.1841http://doi.org/10.1038/nmeth.1841 .
V Vasioukhin , C Bauer , M Yin , 等 . Directed actin polymerization is the driving force for epithelial cell-cell adhesion . Cell , 2000 . 100 (2 ):209 -219 . DOI:10.1016/S0092-8674(00)81559-7http://doi.org/10.1016/S0092-8674(00)81559-7 .
T Fujii , A H Iwane , T Yanagida , 等 . Direct visualization of secondary structures of F-actin by electron cryomicroscopy . Nature , 2010 . 467 (7316 ):724 -728 . DOI:10.1038/nature09372http://doi.org/10.1038/nature09372 .
A J Ridley , M A Schwartz , K Burridge , 等 . Cell migration:integrating signals from front to back . Science , 2003 . 302 (5651 ):1704 -1709 . DOI:10.1126/science.1092053http://doi.org/10.1126/science.1092053 .
G Binnig , C F Quate , C Gerber . Atomic force microscope . Physical Review Letters , 1986 . 56 (9 ):930 -933 . DOI:10.1103/PhysRevLett.56.930http://doi.org/10.1103/PhysRevLett.56.930 .
P K Hansma , J P Cleveland , M Radmacher , 等 . Tapping mode atomic-force microscopy in liquids . Applied Physics Letters , 1994 . 64 (13 ):1738 -1740 . DOI:10.1063/1.111795http://doi.org/10.1063/1.111795 .
D P Allison , N P Mortensen , C J Sullivan , 等 . Atomic force microscopy of biological samples . Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology , 2010 . 2 (6 ):618 -634 . DOI:10.1002/wnan.104http://doi.org/10.1002/wnan.104 .
F M Ohnesorge , J K Horber , W Haberle , 等 . AFM review study on pox viruses and living cells . Biophysical Journal , 1997 . 73 (4 ):2183 -2194 . DOI:10.1016/S0006-3495(97)78250-Xhttp://doi.org/10.1016/S0006-3495(97)78250-X .
S Kasas , V Gotzos , M R Celio . Observation of living cells using the atomic force microscope . Biophysical Journal , 1993 . 64 (2 ):539 -544 . DOI:10.1016/S0006-3495(93)81396-1http://doi.org/10.1016/S0006-3495(93)81396-1 .
H G Hansma , J Vesenka , C Siegerist , 等 . Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope . Science , 1992 . 256 (5060 ):1180 -1184 . DOI:10.1126/science.256.5060.1180http://doi.org/10.1126/science.256.5060.1180 .
R Afrin , U S Zohora , H Uehara , 等 . Atomic force microscopy for cellular level manipulation:imaging intracellular structures and DNA delivery through a membrane hole . Journal of Molecular Recognition , 2009 . 22 (5 ):363 -372 . DOI:10.1002/jmr.971http://doi.org/10.1002/jmr.971 .
D Fotiadis . Atomic force microscopy for the study of membrane proteins . Current Opinion in Biotechnology , 2012 . 23 (4 ):510 -515 . DOI:10.1016/j.copbio.2011.11.032http://doi.org/10.1016/j.copbio.2011.11.032 .
D J Muller . AFM:a nanotool in membrane biology . Biochemistry , 2008 . 47 (31 ):7986 -7998 . DOI:10.1021/bi800753xhttp://doi.org/10.1021/bi800753x .
F Zhang , H N Du , Z X Zhang , 等 . Epitaxial growth of peptide nanofilaments on inorganic surfaces:effects of interfacial hydrophobicity/hydrophilicity . Angewandte Chemie International Edition , 2006 . 45 (22 ):3611 -3613 . DOI:10.1002/anie.200503636http://doi.org/10.1002/anie.200503636 .
F C Zhang , F Zhang , H N Su , 等 . Mechanical manipulation assisted self-assembly to achieve defect repair and guided epitaxial growth of individual peptide nanofilaments . ACS Nano , 2010 . 4 (10 ):5791 -5796 . DOI:10.1021/nn101541mhttp://doi.org/10.1021/nn101541m .
S Sharma , E E Grintsevich , M L Phillips , 等 . Atomic force microscopy reveals drebrin induced remodeling of f-actin with subnanometer resolution . Nano Letters , 2011 . 11 (2 ):825 -827 . DOI:10.1021/nl104159vhttp://doi.org/10.1021/nl104159v .
E Henderson , P G Haydon , D S Sakaguchi . Actin filament dynamics in living glial-cells imaged by atomic force microscopy . Science , 1992 . 257 (5078 ):1944 -1946 . DOI:10.1126/science.1411511http://doi.org/10.1126/science.1411511 .
T D Schindler , L Chen , P Lebel , 等 . Engineering myosins for long-range transport on actin filaments . Nature Nanotechnology , 2014 . 9 (1 ):33 -38 . DOI:10.1038/nnano.2013.229http://doi.org/10.1038/nnano.2013.229 .
G R Heath , B R Johnson , P D Olmsted , 等 . Actin assembly at model-supported lipid bilayers . Biophysical Journal , 2013 . 105 (10 ):2355 -2365 . DOI:10.1016/j.bpj.2013.10.007http://doi.org/10.1016/j.bpj.2013.10.007 .
L S Shlyakhtenko , A A Gall , Y L Lyubchenko . Mica functionalization for imaging of DNA and protein-DNA complexes with atomic force microscopy . Methods in Molecular Biology , 2013 . 931 (1 ):295 -312 . DOI:10.1007/978-1-62703-056-4_14http://doi.org/10.1007/978-1-62703-056-4_14 .
J A Cooper . Effects of cytochalasin and phalloidin on actin . The Journal of Cell Biology , 1987 . 105 (4 ):1473 -1478 . DOI:10.1083/jcb.105.4.1473http://doi.org/10.1083/jcb.105.4.1473 .
E D Korn . Actin polymerization and its regulation by proteins from nonmuscle cells . Physiological Reviews , 1982 . 62 (2 ):672 -737 . http://cn.bing.com/academic/profile?id=1835632918&encoded=0&v=paper_preview&mkt=zh-cnhttp://cn.bing.com/academic/profile?id=1835632918&encoded=0&v=paper_preview&mkt=zh-cn, .
D Sept , J A McCammon . Thermodynamics and kinetics of actin filament nucleation . Biophysical Journal , 2001 . 81 (2 ):667 -674 . DOI:10.1016/S0006-3495(01)75731-1http://doi.org/10.1016/S0006-3495(01)75731-1 .
H Takatsuki , H Tanaka , K M Rice , 等 . Transport of single cells using an actin bundle-myosin bionanomotor transport system . Nanotechnology , 2011 . 22 (24 ):245101 DOI:10.1088/0957-4484/22/24/245101http://doi.org/10.1088/0957-4484/22/24/245101 .
F Patolsky , Y Weizmann , I Willner . Actin-based metallic nanowires as bio-nanotransporters . Nature Materials , 2004 . 3 (10 ):692 -695 . DOI:10.1038/nmat1205http://doi.org/10.1038/nmat1205 .
J L Ross , M Y Ali , D M Warshaw . Cargo transport:molecular motors navigate a complex cytoskeleton . Current Opinion in Cell Biology , 2008 . 20 (1 ):41 -47 . DOI:10.1016/j.ceb.2007.11.006http://doi.org/10.1016/j.ceb.2007.11.006 .
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构