1.天津大学精密仪器与光电子工程学院 天津 300072
2.武警后勤学院附属医院放疗中心 天津 300162
[ "孟慧鹏, 男, 1981年10月出生, 2011年于南开大学获得硕士学位, 目前为天津大学博士研究生, 物理师、高级工程师, 主要从事放射肿瘤治疗物理学及网络相关的研究工作, E-mail:hongyi1218@163.com", "MENG Huipeng (male) was born in October 1981, and received his master's degree from Nankai University in 2011. Now he is a doctoral candidate at Tianjin University, majoring in radiotherapy physics for tumor and network-related research, physicist and senior engineer. E-mail: hongyi1218@163.com" ]
冯远明, 博士, 教授, E-mail:ymfeng@tju.edu.cn Ph.D. FENG Yuanming, professor, E-mail:ymfeng@tju.edu.cn
扫 描 看 全 文
孟慧鹏, 冯远明, 董化江. 基于锥形束CT图像的肿瘤放疗计划剂量计算可行性分析[J]. 辐射研究与辐射工艺学报, 2017,35(4):040202-6.
Huipeng MENG, Yuanming FENG, Huajiang DONG. Feasibility analysis of dose calculation for tumor radiotherapy planning based on cone-beam computed tomography images[J]. Journal of Radiation Research and Radiation Processing, 2017,35(4):040202-6.
孟慧鹏, 冯远明, 董化江. 基于锥形束CT图像的肿瘤放疗计划剂量计算可行性分析[J]. 辐射研究与辐射工艺学报, 2017,35(4):040202-6. DOI: 10.11889/j.1000-3436.2017.rrj.35.040202.
Huipeng MENG, Yuanming FENG, Huajiang DONG. Feasibility analysis of dose calculation for tumor radiotherapy planning based on cone-beam computed tomography images[J]. Journal of Radiation Research and Radiation Processing, 2017,35(4):040202-6. DOI: 10.11889/j.1000-3436.2017.rrj.35.040202.
随机选取40例(头颈部组、胸部组、腹部组、盆腔组各10例)不同部位的RapidArc病例,首先导出所有病例首次治疗时位置验证产生的锥形束电子计算机断层扫描(Cone-beam computed tomography, CBCT)原始投影文件,用自行开发的锥形束CT图像处理工具(Cone-beam CT imaging toolkit, CITK)对CBCT投影进行散射校准并三维重建为0.5cm层厚的断层CBCT图像;然后用Eclipse软件将计划CT图像与该病例对应的CBCT图像进行配准并将计划CT上勾画的靶区等结构映射到CBCT图像上保存;接着用相同的处方剂量和优化条件设计放疗计划,采用各自的HU-ED标定曲线进行剂量计算后生成剂量体积直方图(Dose volume histogram, DVH)并导出;最后计算所有DVH的剂量分布指数(Dose distribution index, DDI)值,用配对,t,检验分析两种方法的结果是否存在差异。结果显示,4组病例中只有胸部组病例有统计学差异(,t,=2.284,p,<, 0.05),其余组病例均无统计学差异(,p,>, 0.05)。实验结果提示,在对CBCT图像进行有效的散射校准并标定对应的HU-ED曲线后,其可用于肿瘤放疗计划的剂量计算。
Forty cases undergoing RapidArc treatment were selected and grouped equally into head neck group, chest group, abdominal group, and pelvic cavity group. The raw cone-beam computed tomography (CBCT) projections produced in position verification were exported and then scatter-corrected by a self-developed cone-beam CT imaging toolkit (CITK) tool and reconstructed to be 5 mm thick tomographic files, which were then matched with the planning CT to map out the target area by eclipse with all the contour line saved. The radiotherapy of the planning CT and modified CBCT was designed with the same prescription dose, and the optimized conditions, and dose volume histogram (DVH) diagrams were generated and exported through dose calculation by Hounsfield unit-electron density (HU-ED) calibration curves. Finally, the dose distribution index (DDI) values for forty tumor patients were calculated and a ,t,-test was used in the quantitative analysis to discuss whether statistics differences existed between the two methods. Statistical differences between the two methods in the four groups were found in the chest group (,t,=2.284,p,<, 0.05), while no statistical differences existed (,p,>, 0.05) in all the other measurements. The comparative analysis showed that the effectively-corrected CBCT image and the corresponding calibrated HU-ED curves can be used in the dose calculation of tumor radiotherapy planning.
锥形束电子计算机断层扫描放疗计划剂量计算
CBCT (Cone-beam computed tomography)Radiotherapy planningDose calculation
M H Smitsmans , B J De , J J Sonke , 等 . Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy . International Journal of Radiation Oncology Biology Physics , 2005 . 63 (4 ):975 -984 . DOI:10.1016/j.ijrobp.2005.07.973http://doi.org/10.1016/j.ijrobp.2005.07.973 .
C R De , A Isambert , A Lisbona , 等 . Image-guided radiotherapy . Cancer Radiotherapie , 2007 . 11 (6-7 ):296 -304 . DOI:10.1016/j.canrad.2007.08.002http://doi.org/10.1016/j.canrad.2007.08.002 .
D A Jaffray , J H Siewerdsen , J W Wong , 等 . Flat-panel cone-beam computed tomography for image-guided radiation therapy . International Journal of Radiation Oncology Biology Physics , 2002 . 53 (53 ):1337 -1349 . DOI:10.1016/S0360-3016(02)02884-5http://doi.org/10.1016/S0360-3016(02)02884-5 .
T G Purdie , J P Bissonnette , K Franks , 等 . Cone-beam computed tomography for on-line image guidance of lung stereotactic radiotherapy: localization, verification, and intrafraction tumor position . International Journal of Radiation Oncology Biology Physics , 2007 . 68 (1 ):243 -252 . DOI:10.1016/j.ijrobp.2006.12.022http://doi.org/10.1016/j.ijrobp.2006.12.022 .
D Yan , F Vicini , J Wong , 等 . Adaptive radiation therapy . Physics in Medicine & Biology , 1997 . 42 (1 ):123 -132 . DOI:10.1088/0031-9155/42/1/008http://doi.org/10.1088/0031-9155/42/1/008 .
J K Annkah , I Rosenberg , N Hindocha , 等 . Assessment of the dosimetric accuracies of CATPhan 504 and CIRS 062 using kV-CBCT for performing direct calculations . Journal of Medical Physics , 2014 . 39 (3 ):133 -141 . DOI:10.4103/0971-6203.139001http://doi.org/10.4103/0971-6203.139001 .
M Klemm , T Kirchner , J Gröhl , 等 . MITK-OpenIGTLink for combining open-source toolkits in real-time computer-assisted interventions . International Journal of Computer Assisted Radiology & Surgery , 2017 . 12 (3 ):351 -361 . DOI:10.1007/s11548-016-1488-yhttp://doi.org/10.1007/s11548-016-1488-y .
H P MENG , Yuanming FENG , Huajiang DONG . Feasibility analysis of selecting optimal radiotherapy plan for chest tumor based on dose distribution index . Journal of Radiation Research and Radiation Process , 2017 . 35 (1 ):010204 DOI:10.11889/j.1000-3436.2017.rrj.35.010204http://doi.org/10.11889/j.1000-3436.2017.rrj.35.010204 .
J C L Alfonso , M A Herrero , L Núñez . A dose-volume histogram based decision-support system for dosimetric comparison of radiotherapy treatment plans . Radiation Oncology , 2015 . 10 (1 ):1 -9 . DOI:10.1186/s13014-015-0569-3http://doi.org/10.1186/s13014-015-0569-3 .
T Lo , Y Yang , E Schreibmann , 等 . Mapping electron density distribution from planning CT to cone-beam CT (CBCT): a novel strategy for accurate dose calculation based on CBCT . International Journal of Radiation Oncology Biology Physics , 2005 . 63 (2 ):S507 -S507 . DOI:10.1016/j.ijrobp.2005.07.861http://doi.org/10.1016/j.ijrobp.2005.07.861 .
J Hatton , B Mccurdy , P B Greer . Cone beam computerized tomography: the effect of calibration of the Hounsfield unit number to electron density on dose calculation accuracy for adaptive radiation therapy . Physics in Medicine & Biology , 2009 . 54 (15 ):329 -346 . DOI:10.1088/0031-9155/54/15/n01http://doi.org/10.1088/0031-9155/54/15/n01 .
Y Yang , E Schreibmann , T Li , 等 . Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation . Physics in Medicine & Biology , 2007 . 52 (3 ):685 -705 . DOI:10.1088/0031-9155/52/3/011http://doi.org/10.1088/0031-9155/52/3/011 .
Y Xu , T Bai , H Yan , 等 . A practical cone-beam CT scatter correction method with optimized Monte Carlo simulations for image-guided radiation therapy . Physics in Medicine & Biology , 2015 . 60 (9 ):3567 -3587 . DOI:10.1088/0031-9155/60/9/3567http://doi.org/10.1088/0031-9155/60/9/3567 .
A Sisniega , W Zbijewski , J Xu , 等 . High-fidelity artifact correction for cone-beam CT imaging of the brain . Physics in Medicine & Biology , 2015 . 60 (4 ):1415 -1439 . DOI:10.1088/0031-9155/60/4/1415http://doi.org/10.1088/0031-9155/60/4/1415 .
A Richter , Q Hu , D Steglich , 等 . Investigation of the usability of conebeam CT data sets for dose calculation . Radiation Oncology , 2008 . 3 (1 ):1 -13 . DOI:10.1186/1748-717X-3-42http://doi.org/10.1186/1748-717X-3-42 .
H S Rønde , L Hoffmann . Validation of Varian's AAA algorithm with focus on lung treatments . Acta Oncologica , 2009 . 48 (2 ):209 -215 . DOI:10.1080/02841860802287108http://doi.org/10.1080/02841860802287108 .
0
浏览量
5
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构