1.中国科学院上海应用物理研究所 上海 201800
2.上海交通大学附属中学 上海 200439
[ "李吉豪, 男, 1986年出生, 2014年于中国科学院大学获理学博士学位, 目前为中国科学院上海应用物理研究所副研究员, 主要从事石墨烯材料的功能化制备及应用研究; 并列第一作者:黄泽茹, 女, 2000年出生, 上海交通大学附属中学, 实习中学生, 利用60Co伽马射线辐照装置研究新型氧化石墨烯材料的辐射还原功能化及应用", "LI Jihao (male) was born in 1986, and received his doctor's degree from University of Chinese Academy of Sciences in 2014. Now he works at Shanghai Institute of Applied Physics, focusing on the preparation and application of functional graphene nanocarbon materials. HUANG Zeru (famale) was born in 2000. Now she is a student in High School Affiliated to Shanghai Jiao Tong University" ]
黄卫兵, E-mail:weibingh@163.comHUANG Weibing, E-mail: weibingh@163.com
扫 描 看 全 文
李吉豪, 黄泽茹, 黄卫兵. 伽马射线辐照制备还原氧化石墨烯[J]. 辐射研究与辐射工艺学报, 2018,36(1):010302-6.
Jihao LI, Zeru HUANG, Weibing HUANG. Preparation of reduced graphene oxide via gamma-ray irradiation[J]. Journal of Radiation Research and Radiation Processing, 2018,36(1):010302-6.
李吉豪, 黄泽茹, 黄卫兵. 伽马射线辐照制备还原氧化石墨烯[J]. 辐射研究与辐射工艺学报, 2018,36(1):010302-6. DOI: 10.11889/j.1000-3436.2018.rrj.36.010302.
Jihao LI, Zeru HUANG, Weibing HUANG. Preparation of reduced graphene oxide via gamma-ray irradiation[J]. Journal of Radiation Research and Radiation Processing, 2018,36(1):010302-6. DOI: 10.11889/j.1000-3436.2018.rrj.36.010302.
在氮气气氛中,以乙二胺(EDA)作为自由基捕获剂,利用γ射线辐照技术在水体系中将氧化石墨烯(GO)辐照还原功能化,制备高分散性的氨基功能化还原氧化石墨烯(rGO)。考察吸收剂量(5.3、15、20、35.3 kGy)对rGO还原程度和功能化程度的影响,并通过傅里叶变换红外光谱(FT-IR)、紫外-可见光吸收光谱(UV-vis)、X射线光电子能谱(XPS)、X射线衍射(XRD)和热重分析(TGA)等方法分析GO的化学结构及还原程度。直观上看,辐照后,GO溶液逐渐呈现棕黑色,随着吸收剂量的增加,溶液颜色加深,且具有良好分散性。FT-IR谱显示,经过γ射线辐照后,初始GO上的羰基被还原去除,EDA小分子被连接到了rGO片层上。UV-vis、XPS、TGA及XRD谱图表明,随着吸收剂量的增大可以使氧化石墨烯还原程度提高,当吸收剂量35.3 kGy时,C/O可达7.21。EDA有机小分子与氧化性的·OH反应,在无氧条件下转化为还原性的自由基,参与到与GO之间的氧化还原反应中,并被接枝到GO层的表面。
We report here a rapid and cost-effective approach for reduction and functionalization of graphene oxide (GO) using ethylenediamine (EDA) in water medium by gamma-ray irradiation in a nitrogen atmosphere. The reduction degree, which can be controlled by varying the absorbed doses (5.3, 15, 20, and 35.3 kGy), was investigated in detail by ultra-violet visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffract meter (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). It was found that the GO dispersion changed from yellow to black with increasing absorbed doses. The results of FT-IR, UV-vis, TGA, and XPS demonstrated that the reduction degree increased with absorbed dose and modification of GO with N-H from EDA molecules occurred. The rGO dispersion in water was stable without precipitate. The ratio of C/O reached 7.21 in rGO-at 35.3 kGy. In addition, a reduction mechanism for determining interactions among the EDA molecules, active radicals from the radiolysis of water, oxygen-containing groups on GO sheets, and some EDA molecules attached onto the rGO sheet because of the recombination of radicals is proposed.
氧化石墨烯还原氧化石墨烯γ射线乙二胺
Reduced graphene oxideGraphene oxideGamma-rayEthylenediamine
C N R Rao , A K Sood , K S Subrahmanyam , 等 . Graphene: the new two-dimensional nanomaterial . Angewandte Chemie International Edition , 2009 . 48 (42 ):7752 -7777 . DOI:10.1002/anie.200901678http://doi.org/10.1002/anie.200901678 .
J Shen , Y Hu , M Shi , 等 . Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets . Chemistry of Materials , 2009 . 21 (15 ):3514 -3520 . DOI:10.1021/cm901247thttp://doi.org/10.1021/cm901247t .
W S Hummers , R E Offeman . Preparation of graphitic oxide . Journal of the American Chemical Society , 1958 . 80 1339 DOI:10.1021/ja01539a017http://doi.org/10.1021/ja01539a017 .
S Park , R S Ruoff . Chemical methods for the production of graphenes . Nature Nanotech , 2009 . 4 217 -224 . DOI:10.1038/nnano.2009.58http://doi.org/10.1038/nnano.2009.58 .
H J Shin , K K Kim , A Benayad , 等 . Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance . Advanced Functional Materials , 2009 . 19 (12 ):1987 -1992 . DOI:10.1002/adfm.200900167http://doi.org/10.1002/adfm.200900167 .
H Wang , J T Robinson , X Li , 等 . Solvothermal reduction of chemically exfoliated graphene sheets . Journal of the American Chemical Society , 2009 . 131 (29 ):9910 -9911 . DOI:10.1021/ja904251phttp://doi.org/10.1021/ja904251p .
B Zhang , L Li , Z Wang , 等 . Radiation induced reduction: an effective and clean route to synthesize func-tionalized graphene . Journal of Materials Chemistry , 2012 . 22 (16 ):7775 -7781 . DOI:10.1039/C2JM16722Khttp://doi.org/10.1039/C2JM16722K .
P Kumar , B Das , B Chitara , 等 . Novel radiation-induced properties of graphene and related materials . Macromolecular Chemistry and Physics , 2012 . 213 (10-11 ):1146 -1163 . DOI:10.1002/macp.201100451http://doi.org/10.1002/macp.201100451 .
H Liu , W Miao , S Yang , 等 . Controlled synthesis of different shapes of Cu2O via γ-irradiation . Crystal Growth & Design , 2009 . 9 (4 ):1733 -1740 . DOI:10.1021/cg800703nhttp://doi.org/10.1021/cg800703n .
Y Zhang , H L Ma , Q Zhang , 等 . Facile synthesis of well-dispersed graphene by γ-ray induced reduction of graphene oxide . Journal of Materials Chemistry , 2012 . 22 (26 ):13064 -13069 . DOI:10.1039/C2JM32231Ehttp://doi.org/10.1039/C2JM32231E .
J Li , B Zhang , L Li , 等 . γ-ray irradiation effects on graphene oxide in an ethylenediamine aqueous solution . Radiation Physics and Chemistry , 2014 . 94 80 -83 . DOI:10.1016/j.radphyschem.2013.06.029http://doi.org/10.1016/j.radphyschem.2013.06.029 .
Y He , J Li , K Luo , 等 . Engineering reduced graphene oxide aerogel produced by effective γ-ray radiation-induced self-assembly and its application for continuous oil-water separation . Industrial & Engineering Chemistry Research , 2016 . 55 (13 ):3775 -3781 . DOI:10.1021/acs.iecr.6b00073http://doi.org/10.1021/acs.iecr.6b00073 .
Y L He , J H Li , L F Li , 等 . The synergy reduction and self-assembly of graphene oxide via gamma-ray irradiation in an ethanediamine aqueous solution . Nuclear Science and Techniques , 2016 . 27 (3 ):61 DOI:10.1007/s41365-016-0068-8http://doi.org/10.1007/s41365-016-0068-8.
张 伯武 , 俞 初红 , 沈 蓉芳 , 等 . 伽马射线辐照技术制备石墨烯基功能材料的研究进展 . 辐射研究与辐射工艺学报 , 2017 . 35 (2 ):020101 DOI:10.11889/j.1000-3436.2017.rrj.35.020101http://doi.org/10.11889/j.1000-3436.2017.rrj.35.020101 http://www.j.sinap.ac.cn/fushe/CN/Y2017/V35/I2/20101http://www.j.sinap.ac.cn/fushe/CN/Y2017/V35/I2/20101, .
Bowu ZHANG , Chuhong YU , Rongfang SHEN , 等 . Progress in research on preparation of graphene-based functional materials using gamma-ray irradiation technology . Journal of Radiation Research and Radiation Processing , 2017 . 35 (2 ):020101 DOI:10.11889/j.1000-3436.2017.rrj.35.020101http://doi.org/10.11889/j.1000-3436.2017.rrj.35.020101 http://www.j.sinap.ac.cn/fushe/CN/Y2017/V35/I2/20101http://www.j.sinap.ac.cn/fushe/CN/Y2017/V35/I2/20101, .
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构