1.中国科学院合肥物质科学研究院 合肥 230031
2.中国科学技术大学 合肥 230026
3.中国科学技术大学第一附属医院 合肥 230001
韦健,男,1995年8月出生,2018年毕业于重庆大学,现为中国科学技术大学在读硕士研究生
汪晖,助理研究员,E-mail: hui.wang@inest.cas.cn
扫 描 看 全 文
韦健, 张纬诚, 闫冰, 等. 基于刚性配准的剂量分布对齐方法[J]. 辐射研究与辐射工艺学报, 2023,41(4):040303.
WEI Jian, ZHANG Weicheng, YAN Bing, et al. Dose distribution alignment method based on rigid registration[J]. Journal of Radiation Research and Radiation Processing, 2023,41(4):040303.
韦健, 张纬诚, 闫冰, 等. 基于刚性配准的剂量分布对齐方法[J]. 辐射研究与辐射工艺学报, 2023,41(4):040303. DOI: 10.11889/j.1000-3436.2022-0010.
WEI Jian, ZHANG Weicheng, YAN Bing, et al. Dose distribution alignment method based on rigid registration[J]. Journal of Radiation Research and Radiation Processing, 2023,41(4):040303. DOI: 10.11889/j.1000-3436.2022-0010.
Gamma(γ)分析是剂量验证、剂量分布比较最重要的手段,由于不同剂量分布的坐标系定义/方向,基准点设置不一致,进行γ分析时往往要对待比较的剂量分布进行对齐,而目前常用的γ分析软件的对齐手段简单,在处理大照射野剂量分布时有显著错误,严重影响了剂量分析比较的准确性。二维剂量分布对齐的要求是在只进行平移、旋转等空间变换,从而达到两张剂量图上相应剂量点的空间位置一致。因为不同点之间的距离在对齐过程中必须是不变的,所以,本研究将对齐问题转化为刚性配准问题。本文采用基于归一化互相关的刚性配准方法,将治疗计划系统计算的剂量分布图与实际测量的剂量分布图进行配准,并输出配准后相应的平移量。选取36组计划系统和实测中心点一致的pinnacle,3,治疗计划系统设计的静态调强质量保证数据,其中,18组为小照射野,另18组为大照射野,使用PTW VeriSoft软件分别计算其在3%/3 mm、3%/2 mm、2%/2 mm通过标准下γ通过率。对于小照射野,直接计算与VeriSoft对齐后和刚性配准后的不同标准γ通过率结果均基本相当,其中在3%/3 mm通过标准下,VeriSoft对准后和刚性配准后与直接计算的γ通过率平均差异分别为0.5%和0.3%。对于大照射野,与直接计算的γ通过率结果相比,18组病例在VeriSoft对齐后于3%/3 mm、3%/2 mm、2%/2 mm通过标准下的γ通过率平均差异分别为17.1%、23.3%和28.3%,均呈现较大差异。而刚性配准后与直接计算在3%/3 mm、3%/2 mm和2%/2 mm标准下γ通过率的平均差异分别为0.4%、1.1%和2.3%,平均差异均较小。刚性配准解决了VeriSoft在处理大照射野剂量分布时存在显著错误的问题,其可以作为放射治疗计划剂量验证时一种适用于不同照射野剂量分布对齐的方法。
Gamma (γ) analysis is the most important method for dose verification and dose distribution comparison. Because of the inconsistency of the coordinate system definitions and directions of different dose distributions and the inconsistent reference point settings, in γ analysis, the dose distributions should often be aligned for comparison. However, the alignment method of the current commonly used γ analysis software is extremely simple, and there are significant errors in processing the dose distribution of the large radiation field, which seriously affect the accuracy of the dose analysis and comparison. Aligning the two-dimensional dose distribution requires performing spatial transformations such as translation and rotation to achieve the same spatial position of the corresponding dose points on the two dose maps. Because the distance between different points must be constant during this alignment process, in this study, the alignment problem is transformed into a rigid registration problem. A rigid registration method based on normalized cross-correlation is used to register the dose distribution map calculated using a treatment planning system with the actually measured dose distribution map and output the corresponding translation amount after registration. 36 groups of static intensity-modulated quality assurance data designed using the pinnacle,3, treatment planning system, whose planning system is consistent with the measured center point, are selected; 18 groups are small irradiation fields, and the other 18 groups are large irradiation fields. PTW VeriSoft software is used to calculate the γ passing rate under 3%/3 mm, 3%/2 mm, and 2%/2 mm pass standards separately. For small irradiation fields, the results of the direct calculation of different standard γ passing rates after alignment with VeriSoft and rigid registration are identical. Among them, under the 3%/3 mm pass standard, the results of VeriSoft alignment and rigid registration are compared with those directly calculated, the average differences in γ passing rate are 0.5% and 0.3%, respectively. For the large irradiation field, compared with the directly calculated γ passing rate results, the average differences of the γ passing rate under 3%/3 mm, 3%/2 mm, and 2%/2 mm pass standards after VeriSoft alignment are 17.1%, 23.3%, and 28.3%, respectively, with ten groups of cases all exhibiting great differences. The average differences of the γ passing rate under the 3%/3 mm, 3%/2 mm, and 2%/2 mm standards after rigid registration and direct calculation are 0.4%, 1.1%, and 2.3%, respectively, and the average difference is small. Rigid registration solves the problem of significant errors in VeriSoft’s handling of large-field dose distributions. It can be used as a method for the alignment of dose distributions in different fields when verifying the dose of radiation treatment plans.
γ分析归一化互相关VeriSoft刚性配准剂量分布比较
Gamma analysisNormalized cross-correlationVeriSoftRigid registrationDose distribution comparison
Ezzell G A, Galvin J M, Low D, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT subcommittee of the AAPM radiation therapy committee[J]. Medical Physics, 2003, 30(8): 2089-2115. DOI: 10. 1118/1.1591194http://dx.doi.org/10.1118/1.1591194.
Ezzell G A, Burmeister J W, Dogan N, et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119[J]. Medical Physics, 2009, 36(11): 5359-5373. DOI: 10.1118/1.3238104http://dx.doi.org/10.1118/1.3238104.
Gillis S, De Wagter C, Bohsung J, et al. An inter-centre quality assurance network for IMRT verification: results of the ESTRO QUASIMODO project[J]. Radiotherapy and Oncology, 2005, 76(3): 340-353. DOI: 10.1016/j.radonc.2005.06.021http://dx.doi.org/10.1016/j.radonc.2005.06.021.
Siochi R A C, Molineu A, Orton C G. Patient-specific QA for IMRT should be performed using software rather than hardware methods[J]. Medical Physics, 2013, 40(7): 070601. DOI: 10.1118/1.4794929http://dx.doi.org/10.1118/1.4794929.
Kerns J R, Childress N, Kry S F. A multi-institution evaluation of MLC log files and performance in IMRT delivery[J]. Radiation Oncology, 2014, 9: 176. DOI: 10.1186/1748-717X-9-176http://dx.doi.org/10.1186/1748-717X-9-176.
Alberto Vazquez-Quino L, Huerta-Hernandez C I, Rangaraj D. Clinical experience with machine log file software for volumetric-modulated arc therapy techniques[J]. Baylor University Medical Center Proceedings, 2017, 30(3): 276-279. DOI: 10.1080/08998280.2017.11929614http://dx.doi.org/10.1080/08998280.2017.11929614.
Diamantopoulos S, Platoni K, Patatoukas G, et al. Treatment plan verification: a review on the comparison of dose distributions[J]. Physica Medica, 2019, 67: 107-115. DOI: 10.1016/j.ejmp.2019.10.029http://dx.doi.org/10.1016/j.ejmp.2019.10.029.
Mah E, Antolak J, Scrimger J W, et al. Experimental evaluation of a 2D and 3D electron pencil beam algorithm[J]. Physics in Medicine and Biology, 1989, 34(9): 1179-1194. DOI: 10.1088/0031-9155/34/9/004http://dx.doi.org/10.1088/0031-9155/34/9/004.
Harms Sr W B, Low D A, Wong J W, et al. A software tool for the quantitative evaluation of 3D dose calculation algorithms[J]. Medical Physics, 1998, 25(10): 1830-1836. DOI: 10.1118/1.598363http://dx.doi.org/10.1118/1.598363.
Low D A, Harms W B, Mutic S, et al. A technique for the quantitative evaluation of dose distributions[J]. Medical Physics, 1998, 25(5): 656-661. DOI: 10.1118/1.598248http://dx.doi.org/10.1118/1.598248.
Bakai A, Alber M, Nüsslin F. A revision of the gamma-evaluation concept for the comparison of dose distributions[J]. Physics in Medicine and Biology, 2003, 48(21): 3543-3553. DOI: 10.1088/0031-9155/48/21/006http://dx.doi.org/10.1088/0031-9155/48/21/006.
Childress N L, Rosen I I. The design and testing of novel clinical parameters for dose comparison[J]. International Journal of Radiation Oncology, Biology, Physics, 2003, 56(5): 1464-1479. DOI: 10.1016/s0360-3016(03)00430-9http://dx.doi.org/10.1016/s0360-3016(03)00430-9.
Moran J M, Radawski J, Fraass B A. A dose-gradient analysis tool for IMRT QA[J]. Journal of Applied Clinical Medical Physics, 2005, 6(2): 62-73. DOI: 10. 1120/jacmp.v6i2.2006http://dx.doi.org/10.1120/jacmp.v6i2.2006.
Basran P S, Woo M K. An analysis of tolerance levels in IMRT quality assurance procedures[J]. Medical Physics, 2008, 35(6): 2300-2307. DOI: 10.1118/1.2919075http://dx.doi.org/10.1118/1.2919075.
Stasi M, Bresciani S, Miranti A, et al. Pretreatment patient-specific IMRT quality assurance: a correlation study between gamma index and patient clinical dose volume histogram[J]. Medical Physics, 2012, 39(12): 7626-7634. DOI: 10.1118/1.4767763http://dx.doi.org/10.1118/1.4767763.
Low D A, Moran J M, Dempsey J F, et al. Dosimetry tools and techniques for IMRT[J]. Medical Physics, 2011, 38(3): 1313-1338. DOI: 10.1118/1.3514120http://dx.doi.org/10.1118/1.3514120.
Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task Group No.218[J]. Medical Physics, 2018, 45(4): e53-e83. DOI: 10.1002/mp.12810http://dx.doi.org/10.1002/mp.12810.
Khalil A, Ng S C, Liew Y M, et al. An overview on image registration techniques for cardiac diagnosis and treatment[J]. Cardiology Research and Practice, 2018, 2018: 1437125. DOI: 10.1155/2018/1437125http://dx.doi.org/10.1155/2018/1437125.
Johnson H J, McCormick M, Ibanez L. The ITK software guide third edition updated for ITK version 4.5[M]. New York: Kitware Inc., 2013.
Ju T, Simpson T, Deasy J O, et al. Geometric interpretation of the gamma dose distribution comparison technique: interpolation-free calculation[J]. Medical Physics, 2008, 35(3): 879-887. DOI: 10.1118/1.2836952http://dx.doi.org/10.1118/1.2836952.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构