1.湖南省农业科学院 核农学与航天育种研究所/湖南省农业生物辐照工程技术研究中心 长沙 410125
2.湖南大学研究生院 隆平分院 长沙 410125
齐慧,女,1988年12月出生,2013年于中国农业科学院农产品质量与食物安全专业获农学硕士学位,现从事辐照技术在农业废弃物中的应用研究,助理研究员,E-mail: qh881206@126.com
王克勤,研究员,E-mail: wkq6412@163.com
扫 描 看 全 文
齐慧, 陈亮, 武小芬, 等. γ 射线辐照及粒径对芦苇秸秆酶解发酵的影响[J]. 辐射研究与辐射工艺学报, 2023,41(1):010402.
QI Hui, CHEN Liang, WU Xiaofen, et al. Effects of γ-ray irradiation and particle size on enzymatic hydrolysis and fermentation of reed straws[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):010402.
齐慧, 陈亮, 武小芬, 等. γ 射线辐照及粒径对芦苇秸秆酶解发酵的影响[J]. 辐射研究与辐射工艺学报, 2023,41(1):010402. DOI: 10.11889/j.1000-3436.2022-0057.
QI Hui, CHEN Liang, WU Xiaofen, et al. Effects of γ-ray irradiation and particle size on enzymatic hydrolysis and fermentation of reed straws[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):010402. DOI: 10.11889/j.1000-3436.2022-0057.
以经过不同吸收剂量(0⁓500 kGy)的γ射线辐照处理后的芦苇秸秆为研究对象,机械粉碎后过筛,研究吸收剂量、过筛孔径对其粒径分布、粉碎能耗、主要组分含量、纤维素酶解转化率、纤维素乙醇转化率的影响。研究结果显示:随着过筛孔径的减小,所获得的芦苇秸秆样品质量显著减少,且与吸收剂量负相关;芦苇的粉碎能耗随吸收剂量的升高而降低,获得相同质量的过筛样品,粉碎能耗又随过筛孔径的减小而显著增加;相同吸收剂量处理的芦苇秸秆,其纤维素酶解转化率和纤维素乙醇转化率均随过筛孔径的减小而增大,其中吸收剂量为分别0 kGy、206 kGy、404 kGy,粒径范围在,r,˂0.180 mm的芦苇秸秆样品其纤维素酶解转化率较,r,˂0.850 mm样品分别提高129.20%、85.98%、106.63%,纤维素乙醇转化率分别提高136.04%、21.75%、4.39%。综合比较粉碎能耗与纤维素酶解转化率和纤维素乙醇转化率的增加比率,最终确定未辐照(0 kGy)芦苇秸秆样品的最佳过筛孔径为0.850 mm;吸收剂量为206 kGy、404 kGy的芦苇秸秆样品最佳过筛孔径为0.425 mm。
To explore the effects of absorbed dose and particle size on enzymatic hydrolysis and fermentation of reed straws (,Phragmites australias,), the straws were irradiated with γ-ray irradiation at different doses (0-500 kGy) and then passed through different aperture sieves after mechanical grinding. The effects of absorbed doses and sieving aperture size on particle size distribution, comminution energy, main component content, enzymatic hydrolysis conversion rate, and ethanol conversion rate of cellulose were examined, and the optimal respective sieving aperture for reed straws with different absorbed doses were determined. The results showed that with decreasing sieve aperture size, reed straw quality decreased significantly and was negatively correlated with the absorbed dose; the comminution energy of reed straws decreased with increasing absorbed doses. With respect to consistent quality of sieved reed straws, the comminution energy increased significantly with decreasing sieving particle size. In reed straws with the same absorbed dose, the enzymatic hydrolysis conversion rate and ethanol conversion rate of cellulose increased with decreasing sieving aperture size. Compared with reed straws with particle size ,r, ˂ 0.850 mm, the cellulose enzymatic hydrolysis conversion rates in reed straws with particle size ,r, ˂ 0.180 mm increased by 129.20%, 85.98%, and 106.63% at absorbed doses of 0 kGy, 206 kGy, and 404 kGy, respectively, and cellulose ethanol conversion increased by 136.04%, 21.75%, and 4.39%, respectively. By compre- hensively comparing the increased ratios of comminution energy, cellulose enzymatic hydrolysis conversion rate, and cellulose ethanol conversion rate, the optimal sieving aperture of non-irradiated (0 kGy) reed straws was deter-mined to be 0.850 mm, and that of reed straws irradiated with 206 kGy or 404 kGy was determined to be 0.425 mm.
芦苇γ射线辐照粒径酶解发酵
Reed strawsγ-ray irradiationGrain diameterEnzymatic hydrolysisFermentation
Zhu S D, Wu Y X, Yu Z N, et al. Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis[J]. Process Biochemistry, 2005, 40(9): 3082-3086. DOI: 10.1016/j.procbio.2005.03.016http://dx.doi.org/10.1016/j.procbio.2005.03.016.
Jin A X, Ren J L, Peng F, et al. Comparative characterization of degraded and non-degradative hemicelluloses from barley straw and maize stems: composition, structure, and thermal properties[J]. Carbohydrate Polymers, 2009, 78(3): 609-619. DOI: 10.1016/j.carbpol.2009.05.024http://dx.doi.org/10.1016/j.carbpol.2009.05.024.
詹怀宇, 付时雨, 李海龙. 我国非木材纤维制浆的发展概况与技术进步(之二) 蔗渣、芦苇和棉秆[J]. 中华纸业, 2011, 32(10): 6-9. DOI: 10.3969/j.issn.1007-9211. 2011.10.001http://dx.doi.org/10.3969/j.issn.1007-9211.2011.10.001.
ZHAN Huaiyu, FU Shiyu, LI Hailong. The development overview and technical progress for non-wood fiber pulping of bagasse, reed and cotton stalk[J]. China Pulp & Paper Industry, 2011, 32(10): 6-9. DOI: 10.3969/j.issn.1007-9211.2011.10.001http://dx.doi.org/10.3969/j.issn.1007-9211.2011.10.001.
Zhang C Y, Su X J, Xiong X Y, et al. 60 Co-γ radiation-induced changes in the physical and chemical properties of rapeseed straw[J]. Biomass and Bioenergy, 2016, 85: 207-214. DOI: 10.1016/j.biombioe.2015.11.022http://dx.doi.org/10.1016/j.biombioe.2015.11.022.
张爱萍, 谢君. 生物质制乙醇预处理方法的研究进展[J]. 华南农业大学学报, 2014, 35(4): 77-84. DOI: 10.7671/j.issn.1001-411X.2014.04.015http://dx.doi.org/10.7671/j.issn.1001-411X.2014.04.015.
ZHANG Aiping, XIE Jun. Pretreatment method for production of bioethanol with lignocellulosic material[J]. Journal of South China Agricultural University, 2014, 35(4): 77-84. DOI: 10.7671/j.issn.1001-411X.2014.04.015http://dx.doi.org/10.7671/j.issn.1001-411X.2014.04.015.
赵晓燕, 朱海涛, 张桂香, 等. 超微粉碎预处理对玉米秸杆酶解液中还原糖组分的影响[J]. 粮油食品科技, 2015, 23(6): 96-98. DOI: 10.16210/j.cnki.1007-7561. 2015.06.025http://dx.doi.org/10.16210/j.cnki.1007-7561.2015.06.025.
ZHAO Xiaoyan, ZHU Haitao, ZHANG Guixiang, et al. Effect of superfine comminution on reducing sugar components in corn stalk enzymatic hydrolysate[J]. Science and Technology of Cereals, Oils and Foods, 2015, 23(6): 96-98. DOI: 10.16210/j.cnki.1007-7561. 2015.06.025http://dx.doi.org/10.16210/j.cnki.1007-7561.2015.06.025.
Jiang S T, Guo N. The steam explosion pretreatment and enzymatic hydrolysis of wheat bran[J]. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38(2): 295-299. DOI: 10.1080/15567036.2012. 744118http://dx.doi.org/10.1080/15567036.2012.744118.
Sindhu R, Kuttiraja M, Binod P, et al. Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology[J]. Renewable Energy, 2014, 62: 362-368. DOI: 10.1016/j.renene.2013.07.041http://dx.doi.org/10.1016/j.renene.2013.07.041.
甄静, 李冠杰, 李伟, 等. 毛栓孔菌XYG422菌株产漆酶发酵条件优化及对玉米秸秆生物降解的研究[J]. 菌物学报, 2017, 36(6): 718-729. DOI: 10.13346/j.mycosystema.160163http://dx.doi.org/10.13346/j.mycosystema.160163.
ZHEN Jing, LI Guanjie, LI Wei, et al. Fermentation condition optimization of laccase producing strain Trametes hirsuta XYG422 and its activity on corn straw degradation[J]. Mycosystema, 2017, 36(6): 718-729. DOI: 10.13346/j.mycosystema.160163http://dx.doi.org/10.13346/j.mycosystema.160163.
张春艳, 谭兴和, 熊兴耀, 等. 油菜秸秆60Co-γ辐照降解产物分析[J]. 湖南农业大学学报(自然科学版), 2017, 43(1): 92-97. DOI: 10.13331/j.cnki.jhau.2017.01.016http://dx.doi.org/10.13331/j.cnki.jhau.2017.01.016.
ZHANG Chunyan, TAN Xinghe, XIONG Xingyao, et al. Analysis of degradation products of rapeseed straw irradiated with 60Co-γ[J]. Journal of Hunan Agricultural University (Natural Sciences), 2017, 43(1): 92-97. DOI: 10.13331/j.cnki.jhau.2017.01.016http://dx.doi.org/10.13331/j.cnki.jhau.2017.01.016.
Wu X F, Chen L, He W Q, et al. Characterize the physicochemical structure and enzymatic efficiency of agricultural residues exposed to γ-irradiation pretreatment[J]. Industrial Crops and Products, 2020, 150: 112228. DOI: 10.1016/j.indcrop.2020.112228http://dx.doi.org/10.1016/j.indcrop.2020.112228.
唐洪涛, 哈益明, 王锋. γ射线辐照玉米秸秆预处理对酶解产糖的影响[J]. 辐射研究与辐射工艺学报, 2011, 29(5): 307-313.
TANG Hongtao, HA Yiming , WANG Feng. Effect of γ-rays radiation pretreatment on enzymatic hydrolysis of corn straw for producing sugar[J]. Journal of Radiation Research and Radiation Processing, 2011, 29(5): 307-313.
Ji G Y, Han L J, Gao C F, et al. Quantitative approaches for illustrating correlations among the mechanical fragmentation scales, crystallinity and enzymatic hydrolysis glucose yield of rice straw[J]. Bioresource Technology, 2017, 241: 262-268. DOI: 10.1016/j.biortech.2017.05.062http://dx.doi.org/10.1016/j.biortech.2017.05.062.
Barakat A, Mayer-Laigle C, Solhy A, et al. Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production[J]. RSC Advances, 2014, 4(89): 48109-48127. DOI: 10.1039/C4RA07568Dhttp://dx.doi.org/10.1039/C4RA07568D.
余燕燕, 李以琳, 楼雨寒, 等. 低共熔溶剂解离木纤维时木质素缩合对纤维素酶解的影响[J]. 林业工程学报, 2021, 6(6): 101-108. DOI: 10.13360/j.issn.2096-1359. 202104022http://dx.doi.org/10.13360/j.issn.2096-1359.202104022.
YU Yanyan, LI Yilin, LOU Yuhan, et al. Effect of lignin condensation on cellulose enzymatic hydrolysis during deep eutectic solvent fractionation of lignocellulose[J]. Journal of Forestry Engineering, 2021, 6(6): 101-108. DOI: 10.13360/j.issn.2096-1359.202104022http://dx.doi.org/10.13360/j.issn.2096-1359.202104022.
Liu Y, Guo L J, Wang L Y, et al. Irradiation pretreatment facilitates the achievement of high total sugars concentration from lignocellulose biomass[J]. Bioresource Technology, 2017, 232: 270-277. DOI: 10. 1016/j.biortech.2017.01.061http://dx.doi.org/10.1016/j.biortech.2017.01.061.
Liu Y, Zhou H, Wang L Y, et al. Improving Saccharomyces cerevisiae growth against lignocellulose-derived inhibitors as well as maximizing ethanol production by a combination proposal of γ-irradiation pretreatment with in situ detoxification[J]. Chemical Engineering Journal, 2016, 287: 302-312. DOI: 10.1016/j.cej.2015.10.086http://dx.doi.org/10.1016/j.cej.2015.10.086.
郭栋豪, 陈亮, 武小芬, 等. 辐照与粉碎对玉米秸秆酶解葡聚糖转化率的影响[J]. 河南农业科学, 2018, 47(1): 139-144. DOI: 10.15933/j.cnki.1004-3268.2018.01.025http://dx.doi.org/10.15933/j.cnki.1004-3268.2018.01.025.
GUO Donghao, CHEN Liang, WU Xiaofen, et al. Effects of irradiation and smash on the glucan conversion rate by enzymatic hydrolysis of corn stalk[J]. Journal of Henan Agricultural Sciences, 2018, 47(1): 139-144. DOI: 10.15933/j.cnki.1004-3268.2018.01.025http://dx.doi.org/10.15933/j.cnki.1004-3268.2018.01.025.
武小芬, 陈亮, 齐慧, 等. 钴-60伽马射线辐照对甲酸分离玉米芯成分的影响[J]. 辐射研究与辐射工艺学报, 2018, 36(1): 010402. DOI:10.11889/j.1000-3436.2018.rrj.36.010402http://dx.doi.org/10.11889/j.1000-3436.2018.rrj.36.010402.
WU Xiaofen, CHEN Liang, QI Hui, et al. Effect of cobalt-60 gamma-ray irradiation on separation of components from corncob by formic acid[J]. Journal of Radiation Research and Radiation Processing, 2018, 36(1): 010402. DOI:10.11889/j.1000-3436.2018.rrj.36.010402http://dx.doi.org/10.11889/j.1000-3436.2018.rrj.36.010402.
Zhu L, Yu B, Chen H, et al. Comparisons of the micronization, steam explosion, and gamma irradiation treatment on chemical composition, structure, physico-chemical properties, and in vitro digestibility of dietary fiber from soybean hulls[J]. Food Chemistry, 2022, 366: 130618. DOI: 10.1016/j.foodchem.2021. 130618http://dx.doi.org/10.1016/j.foodchem.2021.130618.
张勇, 郭栋豪, 王克勤, 等. γ射线辐照预处理玉米秸秆发酵产乙醇的研究[J]. 中国酿造, 2018, 37(9): 58-61. DOI: 10.11882/j.issn.0254-5071.2018.09.012http://dx.doi.org/10.11882/j.issn.0254-5071.2018.09.012.
ZHANG Yong, GUO Donghao, WANG Keqin, et al. Fermentation for ethanol production with γ ray irradiation-pretreated corn straw[J]. China Brewing, 2018, 37(9): 58-61. DOI: 10.11882/j.issn.0254-5071. 2018.09.012http://dx.doi.org/10.11882/j.issn.0254-5071.2018.09.012.
Islam S M M, Elliott J R, Ju L K. Minimization of fermentation inhibitor generation by carbon dioxide-water based pretreatment and enzyme hydrolysis of guayule biomass[J]. Bioresource Technology, 2018, 251: 84-92. DOI: 10.1016/j.biortech.2017.12.032http://dx.doi.org/10.1016/j.biortech.2017.12.032.
0
浏览量
15
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构