1.空军军医大学军事预防医学系辐射防护医学教研室 西安 710032
薛一哲,女,1991年3月出生,2017年6月于陕西师范大学获得硕士学位
丁桂荣,博士,教授,E-mail: dingzhao@fmmu.edu.cn
扫 描 看 全 文
薛一哲, 张兆文, 郭玲, 等. 5G手机辐射对小鼠精子质量和性激素水平的影响[J]. 辐射研究与辐射工艺学报, 2023,41(1):50-59.
XUE Yizhe, ZHANG Zhaowen, GUO Ling, et al. Effects of 5G mobile phone radiation on sperm quality and sex hormone levels in mice[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):50-59.
薛一哲, 张兆文, 郭玲, 等. 5G手机辐射对小鼠精子质量和性激素水平的影响[J]. 辐射研究与辐射工艺学报, 2023,41(1):50-59. DOI: 10.11889/j.1000-3436.2022-0062.
XUE Yizhe, ZHANG Zhaowen, GUO Ling, et al. Effects of 5G mobile phone radiation on sperm quality and sex hormone levels in mice[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):50-59. DOI: 10.11889/j.1000-3436.2022-0062.
为探讨5G手机射频辐射(Radiofrequency radiation,RFR)对成年雄性小鼠精子质量和性激素水平的影响,24只健康成年雄性C57BL/6小鼠随机分为假暴露组(Sham)和4.9 GHz暴露组(4.9 GHz RFR),每组12只。暴露组小鼠接受功率密度50 W/m,2,、频率为4.9 GHz的RFR全身暴露,每天1 h,连续暴露21 d。暴露结束后,通过检测精子数量和畸形率评估精子质量;通过苏木精-伊红(HE)染色观察睾丸组织形态;酶联免疫吸附试验(ELISA)测定睾酮(T)、卵泡刺激素(FSH)、黄体生成素(LH)、促性腺激素释放激素(GnRH)、胶质源性神经营养因子(GDNF)和干细胞因子(SCF)的水平;蛋白免疫印迹(Western blot)检测睾丸组织中GDNF和SCF以及血睾屏障紧密连接相关蛋白(ZO-1和Occludin)的水平。与Sham组相比,4.9 GHz组睾丸形态、精子数量和畸形率无显著改变;血清中FSH和LH含量无明显改变;睾丸内GDNF、SCF、ZO-1和Occludin蛋白水平均无明显变化;但是血清中T和GnRH含量显著降低。结果表明,本实验条件下,4.9 GHz RFR对小鼠精子质量无明显影响,但可导致性激素水平紊乱。
To investigate the effects of 5G mobile phone radiofrequency radiation (RFR) on sperm quality and sex hormone level of adult male mice, 24 healthy adult male C57BL/6 mice were randomly divided into two groups, the sham-exposure group (Sham) and 4.9 GHz-exposure group (4.9 GHz RFR), with 12 mice in each group. The mice in the exposure group were exposed to RFR with a power density of 50 W/m,2, and frequency of 4.9 GHz for 21 consecutive days, for 1 h a day. After exposure, the sperm quality was evaluated by detecting the sperm quantity and abnormality rate; Histomorphology of the testis was determined using Hematoxylin Eosin (HE) staining; the levels of testosterone (T), follicle stimulating hormone (FSH), luteinizing hormone (LH), gonadotropin releasing hormone (GnRH), glial derived neurotrophic factor (GDNF), and stem cell factor (SCF) were measured using enzyme-linked immunosorbent assay (ELISA); A western blot was used to detect the levels of GDNF, SCF and tight junction related proteins (ZO-1 and Occludin) of the blood-testis barrier (BTB) in testis tissue. Compared with the Sham group, no significant change in testicular morphology, sperm count, and sperm abnormality rate was observed in the 4.9 GHz RFR group; The content of FSH and LH in serum showed no significant differences; and the levels of GDNF, SCF, ZO-1 and Occludin in the testis showed no significant differences. However, the concentration of T and GnRH in serum decreased significantly. The results showed that under the experimental conditions, 4.9 GHz RFR had no significant effect on the sperm quality of mice, but could lead to changes in sex hormone levels.
手机射频辐射小鼠睾丸精子性激素
Mobile phone radio frequency radiationMiceTestesSpermSex hormones
刘晓勇. 我国移动通信频率现状及5G频率发展趋势[J]. 通信世界, 2017(24): 16-17. DOI: 10.13571/j.cnki.cww.2017.24.008http://dx.doi.org/10.13571/j.cnki.cww.2017.24.008.
LIU Xiaoyong. Current situation of China's mobile communication frequency and development trend of 5G frequency[J]. Communications World, 2017(24): 16-17. DOI: 10.13571/j.cnki.cww.2017.24.008http://dx.doi.org/10.13571/j.cnki.cww.2017.24.008.
Bushberg J T, Chou C K, Foster K R, et al. IEEE committee on man and radiation-COMAR technical information statement: health and safety issues concerning exposure of the general public to electromagnetic energy from 5G wireless communications networks[J]. Health Physics, 2020,119(2): 236-246. DOI: 10.1097/HP.0000000000001301http://dx.doi.org/10.1097/HP.0000000000001301.
Miyakoshi J, Tonomura H, Koyama S, et al. Effects of exposure to 5.8 GHz electromagnetic field on micronucleus formation, DNA strand breaks, and heat shock protein expressions in cells derived from human eye[J]. IEEE Transactions on NanoBioscience, 2019,18(2): 257-260. DOI: 10.1109/TNB.2019.2905491http://dx.doi.org/10.1109/TNB.2019.2905491.
Rui G, Liu L Y, Guo L, et al. Effects of 5.8 GHz microwave on hippocampal synaptic plasticity of rats[J]. International Journal of Environmental Health Research, 2022, 32(10): 2247-2259. DOI: 10.1080/09603123.2021. 1952165http://dx.doi.org/10.1080/09603123.2021.1952165.
Pacchierotti F, Ardoino L, Benassi B, et al. Effects of radiofrequency electromagnetic field (RF-EMF) exposure on male fertility and pregnancy and birth outcomes: Protocols for a systematic review of experimental studies in non-human mammals and in human sperm exposed in vitro[J]. Environment International, 2021, 157: 106806. DOI: 10.1016/j.envint. 2021.106806http://dx.doi.org/10.1016/j.envint.2021.106806.
Hasan I, Amin T, Alam M R, et al. Hematobiochemical and histopathological alterations of kidney and testis due to exposure of 4G cell phone radiation in mice[J]. Saudi Journal of Biological Sciences, 2021, 28(5): 2933-2942. DOI: 10.1016/j.sjbs.2021.02.028http://dx.doi.org/10.1016/j.sjbs.2021.02.028.
Shahin S, Mishra V, Singh S P, et al. 2.45-GHz microwave irradiation adversely affects reproductive function in male mouse, Mus musculus by inducing oxidative and nitrosative stress[J]. Free Radical Research, 2014, 48(5): 511-525. DOI: 10.3109/10715762.2014. 888717http://dx.doi.org/10.3109/10715762.2014.888717.
Imai N, Kawabe M, Hikage T, et al. Effects on rat testis of 1.95-GHz W-CDMA for IMT-2000 cellular phones[J]. Systems Biology in Reproductive Medicine, 2011, 57(4): 204-209. DOI: 10.3109/19396368.2010.544839http://dx.doi.org/10.3109/19396368.2010.544839.
di Ciaula A. Towards 5G communication systems: are there health implications?[J]. International Journal of Hygiene and Environmental Health, 2018, 221(3): 367-375. DOI: 10.1016/j.ijheh.2018.01.011http://dx.doi.org/10.1016/j.ijheh.2018.01.011.
Shahin N N, El-Nabarawy N A, Gouda A S, et al. The protective role of spermine against male reproductive aberrations induced by exposure to electromagnetic field — an experimental investigation in the rat[J]. Toxicology and Applied Pharmacology, 2019, 370: 117-130. DOI: 10.1016/j.taap.2019.03.009http://dx.doi.org/10.1016/j.taap.2019.03.009.
Shahin S, Singh S P, Chaturvedi C M. 2.45 GHz microwave radiation induced oxidative and nitrosative stress mediated testicular apoptosis: involvement of a p53 dependent bax-caspase-3 mediated pathway[J]. Environmental Toxicology, 2018, 33(9): 931-945. DOI: 10.1002/tox.22578http://dx.doi.org/10.1002/tox.22578.
Jonwal C, Sisodia R, Saxena V K, et al. Effect of 2.45 GHz microwave radiation on the fertility pattern in male mice[J]. General Physiology and Biophysics, 2018, 37(4): 453-460. DOI: 10.4149/gpb_2017059http://dx.doi.org/10.4149/gpb_2017059.
Trošić I, Mataušić-Pišl M, Pavičić I, et al. Histological and cytological examination of rat reproductive tissue after short-time intermittent radiofrequency exposure[J]. Arhiv Za Higijenu Rada i Toksikologiju, 2013, 64(4): 513-519. DOI: 10.2478/10004-1254-64-2013-2394http://dx.doi.org/10.2478/10004-1254-64-2013-2394.
Odacı E, Özyılmaz C. Exposure to a 900 MHz electromagnetic field for 1 hour a day over 30 days does change the histopathology and biochemistry of the rat testis[J]. International Journal of Radiation Biology, 2015, 91(7): 547-554. DOI: 10.3109/09553002.2015. 1031850http://dx.doi.org/10.3109/09553002.2015.1031850.
Mitra S, Shamsaei M E, Malekshah A K, et al. The protective effect of melatonin on radiofrequency electromagnetic fields of mobile phone-induced testicular damage in an experimental mouse model[J]. Andrologia, 2020, 52(11): e13834. 10.1111/and.13834http://dx.doi.org/10.1111/and.13834
Oh J J, Byun S S, Lee S E, et al. Effect of electromagnetic waves from mobile phones on spermatogenesis in the era of 4G-LTE[J]. BioMed Research International, 2018: 1801798. DOI: 10.1155/2018/1801798http://dx.doi.org/10.1155/2018/1801798.
Sommer A M, Grote K, Reinhardt T, et al. Effects of radiofrequency electromagnetic fields (UMTS) on reproduction and development of mice: a multi-generation study[J]. Radiation Research, 2009, 171(1): 89-95. DOI: 10.1667/RR1460.1http://dx.doi.org/10.1667/RR1460.1.
Hu F, Zhu Q, Sun B R, et al. Smad ubiquitylation regulatory factor 1 promotes LIM-homeobox gene 9 degradation and represses testosterone production in Leydig cells[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2018, 32(9): 4627-4640. DOI: 10.1096/fj. 201701480Rhttp://dx.doi.org/10.1096/fj.201701480R.
Yahyazadeh A, Altunkaynak B Z, Kaplan S. Biochemical, immunohistochemical and morphometrical investigation of the effect of thymoquinone on the rat testis following exposure to a 900 MHz electromagnetic field[J]. Acta Histochem, 2020, 122(1): 151467. DOI: 10.1016/j.acthis.2019.151467http://dx.doi.org/10.1016/j.acthis.2019.151467.
Azimzadeh M, Jelodar G. Alteration of testicular regulatory and functional molecules following long-time exposure to 900 MHz RFW emitted from BTS[J]. Andrologia, 2019, 51(9): e13372. DOI: 10.1111/and. 13372http://dx.doi.org/10.1111/and.13372.
Shahin S, Singh S P, Chaturvedi C M. 1 800 MHz mobile phone irradiation induced oxidative and nitrosative stress leads to p53 dependent Bax mediated testicular apoptosis in mice, Mus musculus[J]. Journal of Cellular Physiology, 2018, 233(9): 7253-7267. DOI: 10.1002/jcp. 26558http://dx.doi.org/10.1002/jcp.26558.
Forgács Z, Somosy Z, Kubinyi G, et al. Effect of whole-body 1800 MHz GSM-like microwave exposure on testicular steroidogenesis and histology in mice[J]. Reproductive Toxicology, 2006, 22(1): 111-117. DOI: 10.1016/j.reprotox.2005.12.003http://dx.doi.org/10.1016/j.reprotox.2005.12.003.
Çetkin M, Kızılkan N, Demirel C, et al. Quantitative changes in testicular structure and function in rat exposed to mobile phone radiation[J]. Andrologia, 2017, 49(10): e12761. DOI: 10.1111/and.12761http://dx.doi.org/10.1111/and.12761.
Oyewopo A O, Olaniyi S K, Oyewopo C I, et al. Radiofrequency electromagnetic radiation from cell phone causes defective testicular function in male Wistar rats[J]. Andrologia, 2017, 49(10): 1-6. DOI: 10.1111/and. 12772http://dx.doi.org/10.1111/and.12772.
Gevrek F, Aydin D, Ozsoy S, et al. Inhibition by Egb761 of the effect of cellphone radiation on the male reproductive system[J]. Bratislavske Lekarske Listy, 2017, 118(11): 676-683. DOI: 10.4149/BLL_2017_128http://dx.doi.org/10.4149/BLL_2017_128.
Sepehrimanesh M, Saeb M, Nazifi S, et al. Impact of 900 MHz electromagnetic field exposure on main male reproductive hormone levels: a Rattus norvegicus model[J]. International Journal of Biometeorology, 2014, 58(7): 1657-1663. DOI: 10.1007/s00484-013-0771-7http://dx.doi.org/10.1007/s00484-013-0771-7.
Khoshbakht S, Motejaded F, Karimi S, et al. Protective effects of selenium on electromagnetic field-induced apoptosis, aromatase P450 activity, and leptin receptor expression in rat testis[J]. Iranian Journal of Basic Medical Sciences, 2021, 24(3): 322-330. DOI: 10.22038/ijbms.2021.45358.10554http://dx.doi.org/10.22038/ijbms.2021.45358.10554.
Maluin S M, Osman K, Jaffar F H F, et al. Effect of radiation emitted by wireless devices on male reproductive hormones: a systematic review[J]. Frontiers in Physiology, 2021, 12: 732420. DOI: 10.3389/fphys. 2021.732420http://dx.doi.org/10.3389/fphys.2021.732420.
França L R, Hess R A, Dufour J M, et al. The Sertoli cell: one hundred fifty years of beauty and plasticity[J]. Andrology, 2016, 4(2): 189-212. DOI: 10.1111/andr. 12165http://dx.doi.org/10.1111/andr.12165.
Mital P, Hinton B T, Dufour J M. The blood-testis and blood-epididymis barriers are more than just their tight junctions[J]. Biology of Reproduction, 2011, 84(5): 851-858. DOI: 10.1095/biolreprod.110.087452http://dx.doi.org/10.1095/biolreprod.110.087452.
Yu G, Tang Z P, Chen H, et al. Long-term exposure to 4G smartphone radiofrequency electromagnetic radiation diminished male reproductive potential by directly disrupting Spock3-MMP2-BTB axis in the testes of adult rats[J]. Science of the Total Environment, 2020, 698: 133860. DOI: 10.1016/j.scitotenv.2019.133860http://dx.doi.org/10.1016/j.scitotenv.2019.133860.
0
浏览量
10
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构