1.中国疾病预防控制中心辐射防护与核安全医学所 辐射防护与核应急 中国疾病预防控制中心重点实验室 北京 100088
2.太原市疾病预防控制中心 太原 030012
3.中核战略规划研究总院有限公司 北京 100048
尹亮亮,女,1979年4月出生,2019年于中国疾病预防控制中心获博士学位,研究方向为放射化学分析,副研究员
吉艳琴,研究员,博士生导师,E-mail: jiyanqin@nirp.chinacdc.cn
扫 描 看 全 文
尹亮亮, 张耀, 孔祥银, 等. 液体闪烁计数法分析水中226Ra活度浓度及其不确定度评价[J]. 辐射研究与辐射工艺学报, 2023,41(2):020701.
YIN Liangliang, ZHANG Yao, KONG Xiangyin, et al. Method for determining 226Ra in water via liquid scintillation counting and its uncertainty evaluation[J]. Journal of Radiation Research and Radiation Processing, 2023,41(2):020701.
尹亮亮, 张耀, 孔祥银, 等. 液体闪烁计数法分析水中226Ra活度浓度及其不确定度评价[J]. 辐射研究与辐射工艺学报, 2023,41(2):020701. DOI: 10.11889/j.1000-3436.2022-0064.
YIN Liangliang, ZHANG Yao, KONG Xiangyin, et al. Method for determining 226Ra in water via liquid scintillation counting and its uncertainty evaluation[J]. Journal of Radiation Research and Radiation Processing, 2023,41(2):020701. DOI: 10.11889/j.1000-3436.2022-0064.
通过建立以硫酸钡为载体共沉淀分离水中镭,液体闪烁计数法直接测量镭-226(,226,Ra)的方法,实现水中,226,Ra活度浓度的快速分析,并对方法不确定度进行评价。实验结果表明:该方法分析水中,226,Ra总效率为91.3%~98.5%,方法探测下限为0.01 Bq/L,相对扩展不确定度为7%(,k,=2),样品计数率和总效率引入的误差是水中,226,Ra不确定度的主要来源。该方法具有良好的精密度和准确度,适用于饮用水中,226,Ra的快速分析。
An analytical method was developed for the rapid determination of ,226,Ra in water through liquid scintillation counting. The separation and purification of ,226,Ra from water were performed by co-precipitation using barium sulfate as the carrier; the direct measurement of ,226,Ra was realized by using a liquid scintillation spectrometer. Through sample analysis, a mathematical model for uncertainty evaluation was established and the sources of uncertainty were analyzed. The results showed that the overall counting efficiency of ,226,Ra is 91.3%-98.5%, the detection limit is 0.01 Bq/L, and the relative extended uncertainty is 7% (,k,=2), indicating that the proposed method is suitable for the rapid analysis of ,226,Ra in drinking water. The uncertainty of the method for the determination of ,226,Ra in water is mainly caused by the errors of sample counting rate and overall counting efficiency.
液体闪烁计数法水226Ra不确定度
Liquid scintillation counter (LSC)Water sample226RaUncertainty
International Atomic Energy Agency, IAEA/AQ/19. Analytical methodology for the determination of radium isotopes in environmental samples[R]. Vienna: International Atomic Energy Agency, 2010.
Fernandes P C P, Sousa W O, Julião L M Q C, et al. Development and validation of a technique for the determination of 226Ra and 228Ra by liquid scintillation in liquid samples[J]. Radiation Protection Dosimetry, 2010, 144(1/2/3/4): 335-338. DOI: 10.1093/rpd/ncq434http://dx.doi.org/10.1093/rpd/ncq434.
Carvalho F, Chambers D, Fernandes S, et al. The environmental behaviour of radium: revised edition. IAEA technical reports series No.476[M]. Vienna: International Atomic Energy Agency, 2014: 1-5.
朱寿彭, 李章. 放射毒理学[M]. 苏州: 苏州大学出版社, 2004: 268-269.
ZHU Shoupeng, LI Zhang. Radiotoxicology[M]. Suzhou: Soochow University Press, 2004: 268-269.
WHO. Guidelines for drinking-water quality - 4th edition incorporating the first and second addenda[M]. Geneva: World Helth Organization, 2011.
Kordyasz A J, Bartós B, Bilewicz A. Simultaneous determination of 224Ra and 226Ra isotopes by measuring of emanated 220Rn and 222Rn using a 4-inch silicon epitaxial detector[J]. Chemia Analityczna, 2004, 49(1): 29-39.
Water quality — radium-226 — Part 2: test method using emanometry :ISO 13165-2[S]. Switzerland: the International Organization for Standardization, 2014.
Standard test method for radium-226 in water: ASTM D3454-18[S]. West Conshohocken: American Society for Testing Materials, 2018.
Water quality — radium-226 — part 3: test method using coprecipitate and gamma-spectrometry: ISO 13165-3[S]. Switzerland: the International Organization for Standardization, 2016.
Jia G G, Jia J. Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology[J]. Journal of Environmental Radioactivity, 2012, 106: 98-119. DOI: 10.1016/j.jenvrad.2011.12.003http://dx.doi.org/10.1016/j.jenvrad.2011.12.003.
Ajemigbitse M A, Cannon F S, Warner N R. A rapid method to determine 226Ra concentrations in Marcellus Shale produced waters using liquid scintillation counting[J]. Journal of Environmental Radioactivity, 2020, 220/221: 106300. DOI: 10.1016/j.jenvrad.2020.106300http://dx.doi.org/10.1016/j.jenvrad.2020.106300.
Sadi B B, Li C S, Kramer G H, et al. Rapid determination of 226Ra in drinking water samples using dispersive liquid-liquid microextraction coupled with liquid scintillation counting[J]. Journal of Radioanalytical and Nuclear Chemistry, 2011, 290(2): 415-425. DOI: 10.1007/s10967-011-1333-2http://dx.doi.org/10.1007/s10967-011-1333-2.
Cook M, Kleinschmidt R. Simultaneous determination of 226Ra and 228Ra in water by liquid scintillation spectrometry[J]. Australian Journal of Chemistry, 2011, 64(7): 880-884. DOI: 10.1071/ch11120http://dx.doi.org/10.1071/ch11120.
International Atomic Energy Agency, IAEA/AQ/39: A procedure for the rapid determination of 226Ra and 228Ra in drinking water by liquid scintillation counting[R]. Vienna: International Atomic Energy Agency, 2014.
Sato K, Hashimoto T, Noguchi M, et al. A simple method for determination of 226Ra in environmental samples by applying α-β coincidence liquid scintillation counting[J]. Journal of Environmental Radioactivity, 2000, 48(2): 247-256. DOI: 10.1016/S0265-931X(99)00073-9http://dx.doi.org/10.1016/S0265-931X(99)00073-9.
Jowzaee S. Determination of selected natural radionuclide concentrations in southwestern Caspian groundwater using liquid scintillation counting[J]. Radiation Protection Dosimetry, 2013, 157(2): 234-241. DOI: 10.1093/rpd/nct132http://dx.doi.org/10.1093/rpd/nct132.
Godoy J M, Vianna L M, Godoy M L D P, et al. Determination of 226Ra in produced water by liquid scintillation counting[J]. Journal of Environmental Radioactivity, 2016, 160: 25-27. DOI: 10.1016/j.jenvrad. 2016.02.018http://dx.doi.org/10.1016/j.jenvrad.2016.02.018.
Water quality — radium-226 — part 1: test method using liquid scintillation counting: ISO 13165-1[S]. Switzerland: the International Organization for Standardization, 2013.
Chau N D, Niewodniczański J, Dorda J, et al. Determination of radium isotopes in mine waters through alpha- and beta-activities measured by liquid scintillation spectrometry[J]. Journal of Radioanalytical and Nuclear Chemistry, 1997, 222(1/2): 69-74. DOI: 10.1007/BF02034249http://dx.doi.org/10.1007/BF02034249.
Villa M, Moreno H P, Manjón G. Determination of 226Ra and 224Ra in sediments samples by liquid scintillation counting[J]. Radiation Measurements, 2005, 39(5): 543-550. DOI: 10.1016/j.radmeas.2004.10.004http://dx.doi.org/10.1016/j.radmeas.2004.10.004.
Moreno H P, Vioque I, Manjón G, et al. An easy method for Ra-226 determination in river waters by liquid-scintillation counting[J]. Czechoslovak Journal of Physics, 1999, 49(1): 467-472. DOI: 10.1007/s10582-999-0062-zhttp://dx.doi.org/10.1007/s10582-999-0062-z.
0
浏览量
13
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构