1.武汉科技大学化学与化工学院 武汉 430074
2.湖北科技学院辐射化学与功能材料湖北省重点实验室 咸宁 437000
3.湖北省智慧康养产业技术研究院 咸宁 437000
王亚洋,女,1995年4月出生,2020年于湖北科技学院获得学士学位,在读硕士研究生
李月生,教授,E-mail: frank789292@163.com
扫 描 看 全 文
王亚洋, 王亦凡, 张彬, 等. 辐射接枝制备聚甲基丙烯酸N, N-二甲氨基乙酯-TiO2光催化剂及其对Cr(VI)的吸附还原性能[J]. 辐射研究与辐射工艺学报, 2023,41(1):33-41.
WANG Yayang, WANG Yifan, ZHANG Bin, et al. Preparation of poly(N, N-dimethylaminoethyl methacrylate)-TiO2 photocatalyst by radiation grafting and its adsorption and reduction performance for Cr(VI)[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):33-41.
王亚洋, 王亦凡, 张彬, 等. 辐射接枝制备聚甲基丙烯酸N, N-二甲氨基乙酯-TiO2光催化剂及其对Cr(VI)的吸附还原性能[J]. 辐射研究与辐射工艺学报, 2023,41(1):33-41. DOI: 10.11889/j.1000-3436.2022-0069.
WANG Yayang, WANG Yifan, ZHANG Bin, et al. Preparation of poly(N, N-dimethylaminoethyl methacrylate)-TiO2 photocatalyst by radiation grafting and its adsorption and reduction performance for Cr(VI)[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):33-41. DOI: 10.11889/j.1000-3436.2022-0069.
以二氧化钛(TiO,2,)为基材,甲基丙烯酸二甲氨基乙酯(DMAEMA)为单体,采用共辐射接枝法成功合成了聚甲基丙烯酸N,N-二甲氨基乙酯-TiO,2 ,(TiO,2,-,g,-PDMAEMA)吸附-光催化剂。同时探究了单体浓度和吸收剂量对重金属离子吸附作用的影响。利用扫描电镜、X射线衍射仪、傅里叶红外光谱分析仪、热重分析仪、X射线光电子能谱、接触角等表征手段,证实了电子束共辐射接枝法成功将DMAEMA单体接枝到TiO,2,表面。在吸收剂量为60 kGy、单体浓度为20%时,TiO,2,-,g,-PDMAEMA对10 mg/L Cr(VI)具有较佳的吸附能力,吸附容量可达10.75 mg/g。在可见光诱导下,吸收剂量为60 kGy、单体浓度为10%时,制备的TiO,2,-,g,-PDMAEMA具有最佳的吸附-光催化还原能力,对10 mg/L Cr(VI)的去除率达85.56%。该新型光催化剂上的吸附-光催化协同效应可以满足去除水中Cr(VI)污染的要求。
TiO,2,-doped polymethacrylate N, N-dimethylaminoethyl methacrylate (DMAEMA) (TiO,2,-,g,-PDMAEMA) was successfully synthesized by the co-radiation grafting method with titanium dioxide (TiO,2,) and DMAEMA as the base and the monomer, respectively. Meanwhile, the effects of monomer concentration and absorbed dose on the adsorption of heavy metal ion were investigated. A series of characterizations, including X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetry, X-ray photoelectron spectroscopy and contact angle, confirmed that DMAEMA monomer was successfully grafted onto TiO,2, surface by electron beam co-radiation grafting method. When the absorbed dose was 60 kGy and the monomer concentration was 20%, TiO,2,-,g,-PDMAEMA exhibited excellent adsorption capacity for Cr (VI, 10 mg/L), up to 10.75 mg/g. In addition, the TiO,2,-,g,-PDMAEMA prepared at 60 kGy absorption dose and 10% monomer concentration displayed the optimal adsorption-photocatalytic reduction ability under visible-light irradiation, and the removal rate of Cr (VI, 10 mg/L) reached 85.56%. In conclusion, the adsorption-photocatalytic synergistic effect of this new photocatalyst could meet the requirement of removing Cr (VI) from water.
二氧化钛甲基丙烯酸二甲氨基乙酯辐射接枝光催化Cr(VI)吸附-光催化还原
TiO2Polymethacrylate NN-dimethylaminoethyl methacrylate (PDMAEMA)Radiation graftingPhotocatalyticCr(VI)Adsorption-photocatalytic reduction
Shin H, Yu J, Wang L, et al. Spectral interference of heavy metal contamination on spectral signals of mois-ture content for heavy metal contaminated soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2266-2275. DOI: 10.1109/TGRS.2019. 2946297http://dx.doi.org/10.1109/TGRS.2019.2946297.
Khalid S, Shahid M, Niazi N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 2017, 182: 247-268. DOI: 10.1016/j.gexplo. 2016.11.021http://dx.doi.org/10.1016/j.gexplo.2016.11.021.
Tang X F, Wu Y, Han L B, et al. Characteristics of heavy metal migration in farmland[J]. Environmental Earth Sciences, 2022, 81(12): 338. DOI: 10.1007/s12665-022-10429-2http://dx.doi.org/10.1007/s12665-022-10429-2.
Zhang L X, Zhu G Y, Ge X, et al. Novel insights into heavy metal pollution of farmland based on reactive heavy metals (RHMs): pollution characteristics, predictive models, and quantitative source apportionment[J]. Journal of Hazardous Materials, 2018, 360: 32-42. DOI: 10.1016/j.jhazmat.2018.07.075http://dx.doi.org/10.1016/j.jhazmat.2018.07.075.
郭子彰. 湿地植物基高含氮活性炭制备工艺及其去除重金属的研究[D]. 济南: 山东大学, 2018.
GUO Zizhang. Preparation of nitrogen-rich activated carbon derived from wetland plant and removal of heavy metals from aqueous solutions[D]. Jinan: Shandong University, 2018.
Xia S P, Song Z L, Jeyakumar P, et al. A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(12): 1027-1078. DOI: 10.1080/10643389.2018.1564526http://dx.doi.org/10.1080/10643389.2018.1564526.
Nur-E-Alam M, Mia M A S, Ahmad F, et al. An overview of chromium removal techniques from tannery effluent[J]. Applied Water Science, 2020, 10(9): 205. DOI: 10.1007/s13201-020-01286-0http://dx.doi.org/10.1007/s13201-020-01286-0.
Bashir A, Malik L A, Ahad S, et al. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods[J].Environmental Chemistry Letters, 2019, 17(2): 729-754. DOI: 10.1007/s10311-018-00828-yhttp://dx.doi.org/10.1007/s10311-018-00828-y.
Sun P P, Lee M S. Separation of Pt from hydrochloric acid leaching solution of spent catalysts by solvent extr-action and ion exchange[J]. Hydrometallurgy, 2011, 110(1/2/3/4): 91-98. DOI: 10.1016/j.hydromet.2011. 09.002http://dx.doi.org/10.1016/j.hydromet.2011.09.002.
Malik L A, Bashir A, Qureashi A, et al. Detection and removal of heavy metal ions: a review[J]. Environmental Chemistry Letters, 2019, 17(4): 1495-1521. DOI: 10. 1007/s10311-019-00891-zhttp://dx.doi.org/10.1007/s10311-019-00891-z.
Sun C J, Zhao L P, Wang R. Recent advances in heterostructured photocatalysts for degradation of organic pollutants[J]. Mini-Reviews in Organic Chemistry, 2021, 18(5): 649-669. DOI: 10.2174/1570193x17999200820161301http://dx.doi.org/10.2174/1570193x17999200820161301.
Wen M C, Li G Y, Liu H L, et al. Metal-organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: recent progress and challenges[J]. Environmental Science: Nano, 2019, 6(4): 1006-1025. DOI: 10.1039/c8en01167bhttp://dx.doi.org/10.1039/c8en01167b.
Shoneye A, Sen Chang J, Chong M N, et al. Recent progress in photocatalytic degradation of chlorinated phenols and reduction of heavy metal ions in water by TiO2-based catalysts[J]. International Materials Reviews, 2022, 67(1): 47-64. DOI: 10.1080/09506608.2021. 1891368http://dx.doi.org/10.1080/09506608.2021.1891368.
Ismael M. Latest progress on the key operating parameters affecting the photocatalytic activity of TiO2-based photocatalysts for hydrogen fuel production: a comprehensive review[J]. Fuel, 2021, 303: 121207. DOI: 10.1016/j.fuel.2021.121207http://dx.doi.org/10.1016/j.fuel.2021.121207.
Yadav H M, Kim J S, Pawar S H. Developments in photocatalytic antibacterial activity of nano TiO2: a review[J]. Korean Journal of Chemical Engineering, 2016, 33(7): 1989-1998. DOI: 10.1007/s11814-016-0118-2http://dx.doi.org/10.1007/s11814-016-0118-2.
Marinho B A, de Souza S M A G U, de Souza A A U, et al. Electrospun TiO2 nanofibers for water and wastewater treatment: a review[J]. Journal of Materials Science, 2021, 56(9): 5428-5448. DOI: 10.1007/s10853-020-05610-6http://dx.doi.org/10.1007/s10853-020-05610-6.
丁小军, 虞鸣, 王自强, 等. 棉纤维辐射接枝纳米粒子的绿色印染新思路[J]. 辐射研究与辐射工艺学报, 2020, 38(1): 011001. DOI: 10.11889/j.1000-3436.2020.rrj.38. 011001http://dx.doi.org/10.11889/j.1000-3436.2020.rrj.38.011001.
DING Xiaojun, YU Ming, WANG Ziqiang, et al. “Green”dyeing of cotton fabric by radiation-initiated immobilizing nanoparticles[J]. Journal of Radiation Research and Radiation Processing, 2020, 38(1): 011001. DOI: 10.11889/j.1000-3436.2020.rrj.38. 011001http://dx.doi.org/10.11889/j.1000-3436.2020.rrj.38.011001.
俞立帆, 刘泽鹏, 王自强, 等. 辐射接枝改性实现酸性染料在棉布表面的绿色印染[J]. 辐射研究与辐射工艺学报, 2022, 40(3): 23-29. DOI: 10.11889/j.1000-3436.2021-0028http://dx.doi.org/10.11889/j.1000-3436.2021-0028.
YU Lifan, LIU Zepeng, WANG Ziqiang, et al. Radiation grafting of cotton fabric for “green” dyeing with acid dyes[J]. Journal of Radiation Research and Radiation Processing, 2022, 40(3): 23-29. DOI: 10.11889/j.1000-3436.2021-0028http://dx.doi.org/10.11889/j.1000-3436.2021-0028.
Li Y S, Li T T, Song X F, et al. Enhanced adsorption-photocatalytic reduction removal for Cr(VI) based on functionalized TiO2 with hydrophilic monomers by pre-radiation induced grafting-ring opening method[J]. Applied Surface Science, 2020, 514: 145789. DOI: 10.1016/j.apsusc.2020.145789http://dx.doi.org/10.1016/j.apsusc.2020.145789.
Li Q H, Dong M, Li R, et al. Enhancement of Cr(VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C3N4/TiO2 nanofibers[J]. Carbohydrate Polymers, 2021, 253: 117200. DOI: 10.1016/j.carbpol.2020.117200http://dx.doi.org/10.1016/j.carbpol.2020.117200.
Ji W, Wang X B, Ding T Q, et al. Electrospinning preparation of nylon-6@UiO-66-NH2 fiber membrane for selective adsorption enhanced photocatalysis reduction of Cr(VI) in water[J]. Chemical Engineering Journal, 2022, 451(2): 138973. DOI: 10.1016/j.cej.2022.138973http://dx.doi.org/10.1016/j.cej.2022.138973.
0
浏览量
25
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构