1.湖北文理学院附属医院 襄阳市中心医院肿瘤科 襄阳 441021
2.湖北文理学院肿瘤研究所 襄阳 441021
3.天津医科大学 生物医学工程与技术学院 天津 300050
4.山东省肿瘤医院 济南 250117
赵前锋,男,1976年9月出生,2008年本科毕业于三峡大学,主管技师,从事肿瘤放射物理学研究工作
唐春慧,E-mail: tangchunhui1992@163.com
扫 描 看 全 文
赵前锋, 明鑫, 刘波, 等. 基于iCBCT图像的盆腔肿瘤放疗计划剂量计算相关研究[J]. 辐射研究与辐射工艺学报, 2023,41(1):67-73.
ZHAO Qianfeng, MING Xin, LIU Bo, et al. Study on dose calculation of pelvic tumor radiotherapy planning based on iCBCT images[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):67-73.
赵前锋, 明鑫, 刘波, 等. 基于iCBCT图像的盆腔肿瘤放疗计划剂量计算相关研究[J]. 辐射研究与辐射工艺学报, 2023,41(1):67-73. DOI: 10.11889/j.1000-3436.2022-0090.
ZHAO Qianfeng, MING Xin, LIU Bo, et al. Study on dose calculation of pelvic tumor radiotherapy planning based on iCBCT images[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):67-73. DOI: 10.11889/j.1000-3436.2022-0090.
为了探讨iCBCT图像用于盆腔肿瘤剂量计算的准确性,本研究选取某院使用Halcyon加速器行放疗的病例30例,利用Eclipse 15.6计划系统重新设计容积旋转调强(VMAT)放疗计划,随后将首次治疗采集的摆位CBCT图像(iCBCT)与计划CT图像(pCT)进行配准,并将每例病例的VMAT计划(pCT计划)移植到iCBCT图像上,基于iCBCT图像标定的CT值-相对电子密度曲线重新进行剂量计算,生成新的治疗计划(iCBCT计划)。采用SPSS 26.0软件对两种计划的剂量学参数进行,t,检验分析。结果显示,iCBCT计划和pCT的计划相比,计划靶区(Planning target volume, PTV)剂量学参数中,D,2,、,D,98,、,D,mean,、适形指数(Conformity index, CI)和均匀性指数(Homogeneity index, HI)结果均较接近,差异平均值依次为0.71%、0.53%、0.97%、0.25%和0.95%,差异无统计学意义(,p,>,0.05)。所统计的危及器官中,左右股骨头、直肠和膀胱的,D,mean,、,D,5,、,V,20,、,V,30,和,V,40,的差异平均值均较小,均无统计学意义(,p,>,0.05),差异平均值最大的参数为膀胱的,D,mean,,差异值为1.71%。与pCT计划相比,iCBCT计划的Gamma通过率为1%/1 mm标准(88.1±1.1)%,2%/2 mm标准(97.8±1.2)%。两种计划的等中心点剂量与实测值相比差异平均值分别为0.98%和0.81%,差异均无统计学意义(,p,>,0.05)。结果提示,在大多数盆腔病例中,iCBCT图像用于放疗计划剂量计算的结果准确、可靠,准确性满足临床应用的要求。
In order to discuss the accuracy of iterative cone-beam computed tomography (iCBCT) image used for pelvic tumor dose calculation, thirty cases were selected from a hospital that use a Halcyon accelerator for radiotherapy. The volumetric modulated arc therapy (VMAT) plan was redesigned using Eclipse 15.6 planning system, and the setup iCBCT image acquired for the first time was registered with the planning CT image (pCT). The VMAT plan (pCT plan) of each case was transplanted to the iCBCT image, and the dose was calculated again based on the CT-relative electron density curve calibrated using the iCBCT image to generate a new treatment plan (iCBCT plan). The dosimetric parameters of the two plans were analyzed using SPSS 26.0 software to perform ,t,-tests. The results of ,D,2,D,98,D,mean, conformity index (CI), and homogeneity index (HI) in the planning target volume dosimetry parameters of the iCBCT plan were similar to those of the pCT plan. The average differences were 0.71%, 0.53%, 0.97%, 0.25%, and 0.95%, respectively, with no statistical significance (,p,>,0.05). Among the organs at risk, the average difference of ,D,mean,D,5,V,20,V,30, and ,V,40, between the left and right femoral head, rectum, and bladder was small, with no statistical significance (,p,>,0.05). The parameter with the largest average difference (1.71%) was ,D,mean, of the bladder. Compared with that of the pCT plan, the gamma pass rate of the iCBCT plan was 1%/1 mm standard (88.1±1.1)% and 2%/2 mm standard (97.8±1.2)%. Compared with the measured values, the mean difference between the isocenter dose of the two plans was 0.98% and 0.81%, respectively, with no statistical significance (,p,>,0.05). The results show that in most pelvic cases, the results of the iCBCT images used for radiotherapy planning dose calculation are accurate and reliable, and the accuracy meets the requirements of clinical application.
迭代锥形束CT剂量计算盆腔肿瘤容积旋转调强
Iterative cone-beam CT (iCBCT)Dose calculationPelvic tumorVolumetric modulated arc therapy(VMAT)
Annkah J K, Rosenberg I, Hindocha N, et al. Assessment of the dosimetric accuracies of CATPhan 504 and CIRS 062 using kV-CBCT for performing direct calculations[J]. Journal of Medical Physics, 2014, 39(3): 133-141. DOI: 10.4103/0971-6203.139001http://dx.doi.org/10.4103/0971-6203.139001.
Meng H P, Meng X J, Qiu Q T, et al. Feasibility evaluation of kilovoltage cone-beam computed tomography dose calculation following scatter correction: investigations of phantom and representative tumor sites[J]. Translational Cancer Research, 2021, 10(8): 3726-3738. DOI: 10.21037/tcr-21-495http://dx.doi.org/10.21037/tcr-21-495.
Tamihardja J, Cirsi S, Kessler P, et al. Cone beam CT-based dose accumulation and analysis of delivered dose to the dominant intraprostatic lesion in primary radiotherapy of prostate cancer[J]. Radiation Oncology, 2021, 16(1): 205. DOI: 10.1186/s13014-021-01933-zhttp://dx.doi.org/10.1186/s13014-021-01933-z.
Kim H, Huq M S, Lalonde R, et al. Early clinical experience with varian halcyon V2 linear accelerator: dual-isocenter IMRT planning and delivery with portal dosimetry for gynecological cancer treatments[J]. Journal of Applied Clinical Medical Physics, 2019, 20(11): 111-120. DOI: 10.1002/acm2.12747http://dx.doi.org/10.1002/acm2.12747.
杨波, 汪之群, 李文博, 等. 基于盆腔迭代锥形束CT图像的剂量学可行性分析[J]. 中华放射医学与防护杂志, 2021,41(11): 851-855. DOI: 10.3760/cma.j.issn.0254-5098.2021.11.010http://dx.doi.org/10.3760/cma.j.issn.0254-5098.2021.11.010.
YANG Bo, WANG Zhiqun, LI Wenbo, et al. Dosimetric feasibility of iterative kV CBCT for radiation therapy planning for pelvis[J]. Chinese Journal of Radiological Medicine and Protection, 2021, 41(11): 851-855. DOI: 10.3760/cma.j.issn.0254-5098.2021.11.010http://dx.doi.org/10.3760/cma.j.issn.0254-5098.2021.11.010.
Washio H, Ohira S, Funama Y, et al. Metal artifact reduction using iterative CBCT reconstruction algorithm for head and neck radiation therapy: a phantom and clinical study[J]. European Journal of Radiology, 2020, 132: 109293. DOI: 10.1016/j.ejrad.2020.109293http://dx.doi.org/10.1016/j.ejrad.2020.109293.
Posiewnik M, Piotrowski T. A review of cone-beam CT applications for adaptive radiotherapy of prostate cancer[J]. Physica Medica, 2019, 59: 13-21. DOI: 10.1016/j.ejmp.2019.02.014http://dx.doi.org/10.1016/j.ejmp.2019.02.014.
Åström L M, Behrens C P, Calmels L, et al. Online adaptive radiotherapy of urinary bladder cancer with full re-optimization to the anatomy of the day: initial experience and dosimetric benefits[J]. Radiotherapy and Oncology, 2022, 171: 37-42. DOI: 10.1016/j.radonc. 2022.03.014http://dx.doi.org/10.1016/j.radonc.2022.03.014.
Wang K Q, Meng H P, Chen J, et al. Plan quality and robustness in field junction region for craniospinal irradiation with VMAT[J]. Physica Medica, 2018, 48: 21-26. DOI: 10.1016/j.ejmp.2018.03.007http://dx.doi.org/10.1016/j.ejmp.2018.03.007.
International Commission Radiological Units. Prescri-bing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT)[J]. Journal of the ICRU, 2010, 10(1): 1-106. DOI: 10.1093/jicru_ndq002http://dx.doi.org/10.1093/jicru_ndq002.
Richter A, Hu Q Q, Steglich D, et al. Investigation of the usability of conebeam CT data sets for dose calculation[J]. Radiation Oncology (London, England), 2008, 3: 42. DOI: 10.1186/1748-717X-3-42http://dx.doi.org/10.1186/1748-717X-3-42.
Jarema T, Aland T. Using the iterative kV CBCT reconstruction on the Varian Halcyon linear accelerator for radiation therapy planning for pelvis patients[J]. Physica Medica, 2019, 68: 112-116. DOI: 10.1016/j.ejmp.2019.11.015http://dx.doi.org/10.1016/j.ejmp.2019.11.015.
Onozato Y, Kadoya N, Fujita Y, et al. Evaluation of on-board kV cone beam computed tomography-based dose calculation with deformable image registration using Hounsfield unit modifications[J]. International Journal of Radiation Oncology*Biology*Physics, 2014, 89(2): 416-423. DOI: 10.1016/j.ijrobp.2014.02.007http://dx.doi.org/10.1016/j.ijrobp.2014.02.007.
Miyasaka R, Cho S, Hiraoka T, et al. Investigation of Halcyon multi-leaf collimator model in Eclipse treatment planning system: a focus on the VMAT dose calculation with the Acuros XB algorithm[J]. Journal of Applied Clinical Medical Physics, 2022, 23(3): e13519. DOI: 10. 1002/acm2.13519http://dx.doi.org/10.1002/acm2.13519.
Guan H Q, Dong H. Dose calculation accuracy using cone-beam CT (CBCT) for pelvic adaptive radiotherapy[J]. Physics in Medicine and Biology, 2009, 54(20): 6239-6250. DOI: 10.1088/0031-9155/54/20/013http://dx.doi.org/10.1088/0031-9155/54/20/013.
Hu Y F, Byrne M, Archibald-Heeren B, et al. A feasibility study on the use of TomoTherapy megavoltage computed tomography images for palliative patient treatment planning[J]. Journal of Medical Physics, 2017, 42(3): 163-170. DOI: 10.4103/jmp.JMP_32_17http://dx.doi.org/10.4103/jmp.JMP_32_17.
0
浏览量
13
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构