1.黑龙江省原子能研究院 哈尔滨 150081
2.烟台哈尔滨工程大学研究院 烟台 264006
张建伟,女,1996年7月出生,2020年于河北民族师范学院获学士学位,现为黑龙江省原子能研究院在读研究生,从事辐射化学与放射化学研究
赵弘韬,研究员,E-mail: zhaohongtao2019@163.com
扫 描 看 全 文
张建伟, 田波, 李金凤, 等. 偕胺肟基铀吸附材料研究进展[J]. 辐射研究与辐射工艺学报, 2023,41(1):1-15.
ZHANG Jianwei, TIAN Bo, LI Jinfeng, et al. Research progress of amidoxime uranium adsorption materials[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):1-15.
张建伟, 田波, 李金凤, 等. 偕胺肟基铀吸附材料研究进展[J]. 辐射研究与辐射工艺学报, 2023,41(1):1-15. DOI: 10.11889/j.1000-3436.2022-0099.
ZHANG Jianwei, TIAN Bo, LI Jinfeng, et al. Research progress of amidoxime uranium adsorption materials[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):1-15. DOI: 10.11889/j.1000-3436.2022-0099.
采用吸附材料处理铀矿开采、加工及乏燃料后处理产生的含铀废水和吸附海水中的铀为当前研究热点。吸附材料与铀的结合主要是通过官能团的配位作用,其中偕胺肟基团由于对铀具有特异性响应,而表现出优异的吸附选择性。本文归纳了偕胺肟基团的制备方法,对氰基-羟胺法进行了详细介绍。从吸附材料形态和功能角度详述了现阶段偕胺肟单官能团吸附材料的研究进展,同时对-NH,2,和-AO或-COOH和-AO的双官能团协同吸附进行了介绍,并对偕胺肟基团与铀的配位机理进行了简要分析,最后对偕胺肟基吸附材料的基底材料选择、制备方法和特殊功能性进行了展望。
Researching of adsorbent materials is a hot topic in the fields of uranium mining, processing and treatment of uranium-containing wastewater from spent fuel reprocessing and uranium extraction from seawater. The binding of adsorbent materials to uranium is mainly via the coordination of functional groups, among which the amidoxime groups exhibit excellent adsorption selectivity due to their specific interaction with uranium. In this paper, we summarize the preparation methods of amidoxime groups, especially the cyano-hydroxylamine method is introduced in detail. The progress of the present research on the mono-functional adsorption materials of amidoxime is elaborated from the perspective of the morphology and function of adsorbent materials, while the bifunctional synergistic adsorption of -NH,2, and -AO or -COOH and -AO is introduced, and the coordination mechanism of amidoxime groups with uranium is briefly analyzed, and finally, trends are prospected in view of the selection of substrate materials, preparation methods and special functionalities of amidoxime-based adsorbent materials.
铀吸附偕胺肟制备方法配位机理
Uranium adsorptionAmidoximePreparation methodCoordination mechanism
Nuclear Energy Agency/International Atomic Energy Agency. Uranium 2020: Resources, production and demand[R]. Paris: OECD Publishing, 2021. 10.1787/d82388ab-enhttp://dx.doi.org/10.1787/d82388ab-en
Ivanov A S, Parker B F, Zhang Z C, et al. Siderophore-inspired chelator hijacks uranium from aqueous medium[J]. Nature Communications, 2019, 10: 819. DOI: 10. 1038/s41467-019-08758-1http://dx.doi.org/10.1038/s41467-019-08758-1.
Lin K, Sun W Y, Feng L J, et al. Kelp inspired bio-hydrogel with high antibiofouling activity and super-toughness for ultrafast uranium extraction from seawater[J]. Chemical Engineering Journal, 2022, 430: 133121. DOI: 10.1016/j.cej.2021.133121http://dx.doi.org/10.1016/j.cej.2021.133121.
Liatsou I, Pashalidis I, Nicolaides A. Triggering selective uranium separation from aqueous solutions by using salophen-modified biochar fibers[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318(3): 2199-2203. DOI: 10.1007/s10967-018-6186-5http://dx.doi.org/10.1007/s10967-018-6186-5.
Yao W, Wang X X, Liang Y, et al. Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U(VI) and 241Am(III) efficient removal: batch and EXAFS studies[J]. Chemical Engineering Journal, 2018, 332: 775-786. DOI: 10.1016/j.cej.2017.09.011http://dx.doi.org/10.1016/j.cej.2017.09.011.
Wang Z Y, Ma R C, Meng Q H, et al. Constructing uranyl-specific nanofluidic channels for unipolar ionic transport to realize ultrafast uranium extraction[J]. Journal of the American Chemical Society, 2021, 143(36): 14523-14529. DOI: 10.1021/jacs.1c02592http://dx.doi.org/10.1021/jacs.1c02592.
Zhang Z B, Dong Z M, Wang X X, et al. Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): batch and fixed-bed column studies[J]. Chemical Engineering Journal, 2019, 370: 1376-1387. DOI: 10.1016/j.cej.2019.04.012http://dx.doi.org/10.1016/j.cej.2019.04.012.
Szenknect S, Mesbah A, Descostes M, et al. Uranium removal from mining water using Cu substituted hydroxyapatite[J]. Journal of Hazardous Materials, 2020, 392: 122501. DOI: 10.1016/j.jhazmat.2020.122501http://dx.doi.org/10.1016/j.jhazmat.2020.122501.
Amphlett J T M, Choi S, Parry S A, et al. Insights on uranium uptake mechanisms by ion exchange resins with chelating functionalities: Chelation vs. anion exchange[J]. Chemical Engineering Journal, 2020, 392: 123712. DOI: 10.1016/j.cej.2019.123712http://dx.doi.org/10.1016/j.cej.2019.123712.
Shen J J, Schäfer A. Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review[J]. Chemosphere, 2014, 117: 679-691. DOI: 10.1016/j.chemosphere.2014.09.090http://dx.doi.org/10.1016/j.chemosphere.2014.09.090.
Krawczyk-Bärsch E, Gerber U, Müller K, et al. Multidisciplinary characterization of U(VI) sequestration by Acidovorax facilis for bioremediation purposes[J]. Journal of Hazardous Materials, 2018, 347: 233-241. DOI: 10.1016/j.jhazmat.2017.12.030http://dx.doi.org/10.1016/j.jhazmat.2017.12.030.
Kong L J, Su M H, Mai Z H, et al. Removal of uranium from aqueous solution by two-dimensional electrosorption reactor[J]. Environmental Technology & Innovation, 2017, 8: 57-63. DOI: 10.1016/j.eti.2017. 04.001http://dx.doi.org/10.1016/j.eti.2017.04.001.
Wannachod T, Wongsawa T, Ramakul P, et al. The synergistic extraction of uranium ions from monazite leach solution via HFSLM and its mass transfer[J]. Journal of Industrial and Engineering Chemistry, 2016, 33: 246-254. DOI: 10.1016/j.jiec.2015.10.006http://dx.doi.org/10.1016/j.jiec.2015.10.006.
Meng J, Lin X Y, Li H N, et al. Adsorption capacity of kelp-like electrospun nanofibers immobilized with bayberry tannin for uranium(VI) extraction from seawater[J]. RSC Advances, 2019, 9(14): 8091-8103. DOI: 10. 1039/c8ra09297dhttp://dx.doi.org/10.1039/c8ra09297d.
Shi S, Qian Y X, Mei P P, et al. Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater[J]. Nano Energy, 2020, 71: 104629. DOI: 10.1016/j.nanoen.2020. 104629http://dx.doi.org/10.1016/j.nanoen.2020.104629.
Ruan Y, Zhang H M, Yu Z J, et al. Phosphate enhanced uranium stable immobilization on biochar supported nano zero valent iron[J]. Journal of Hazardous Materials, 2022, 424: 127119. DOI: 10.1016/j.jhazmat.2021.127119http://dx.doi.org/10.1016/j.jhazmat.2021.127119.
Gu H Q, Ju P H, Liu Q, et al. Constructing an amino-reinforced amidoxime swelling layer on a polyacrylonitrile surface for enhanced uranium adsorption from seawater[J]. Journal of Colloid and Interface Science, 2022, 610: 1015-1026. DOI: 10.1016/j.jcis.2021.11.152http://dx.doi.org/10.1016/j.jcis.2021.11.152.
Zhang W H, Han X, You J, et al. Rapid and manual-shaking exfoliation of amidoximated cellulose nanofibrils for a large-capacity filtration capture of uranium[J]. Journal of Materials Chemistry A, 2022, 10(14): 7920-7927. DOI: 10.1039/D1TA10357Ahttp://dx.doi.org/10.1039/D1TA10357A.
Xu X, Huang C, Wang Y J, et al. Engineering biaxial stretching polyethylene membrane with poly(amidoxime)-nanoparticle and mesopores architecture for uranium extraction from seawater[J]. Chemical Engineering Journal, 2022, 430: 133159. DOI: 10.1016/j.cej.2021. 133159http://dx.doi.org/10.1016/j.cej.2021.133159.
Cai Y W, Chen L, Yang S T, et al. Rational synthesis of novel phosphorylated chitosan-carboxymethyl cellulose composite for highly effective decontamination of U(VI)[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5393-5403. DOI: 10.1021/acssuschemeng.8b06416http://dx.doi.org/10.1021/acssuschemeng.8b06416.
Eloy F, Lenaers R. The chemistry of amidoximes and related compounds[J]. Chemical Reviews, 1962, 62(2): 155-183. DOI: 10.1021/cr60216a003http://dx.doi.org/10.1021/cr60216a003.
Egawa H, Harada H. Recovery of uranium from sea water by using chelating resins containing amidoxime groups[J]. Nippon Kagaku Kaishi, 1979: 958-959. DOI: 10.1246/nikkashi.1979.958http://dx.doi.org/10.1246/nikkashi.1979.958.
Das S, Wang Z Y, Brown S, et al. Strategies toward the synthesis of advanced functional sorbent performance for uranium uptake from seawater[J]. Industrial & Engineering Chemistry Research, 2021, 60(42): 15037-15044. DOI: 10.1021/acs.iecr.1c02920http://dx.doi.org/10.1021/acs.iecr.1c02920.
Das S, Brown S, Mayes R T, et al. Novel poly(imide dioxime) sorbents: development and testing for enhanced extraction of uranium from natural seawater[J]. Chemical Engineering Journal, 2016, 298: 125-135. DOI: 10.1016/j.cej.2016.04.013http://dx.doi.org/10.1016/j.cej.2016.04.013.
Tian G X, Teat S J, Zhang Z Y, et al. Sequestering uranium from seawater: binding strength and modes of uranyl complexes with glutarimidedioxime[J]. Dalton Transactions, 2012, 41(38): 11579-11586. DOI: 10.1039/C2DT30978Ehttp://dx.doi.org/10.1039/C2DT30978E.
Ley H, Ulrich M. Über salzbildung Bei oxyamidoximen. (über innere komplexsalze. XI)[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1914, 47(3): 2938-2944. DOI: 10.1002/cber.19140470388http://dx.doi.org/10.1002/cber.19140470388.
Werner A, Buss H. Ueber benzhydroximsäurechlorid[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1894, 27(2): 2193-2201. DOI: 10.1002/cber.189402702201http://dx.doi.org/10.1002/cber.189402702201.
Li B Y, Sun Q, Zhang Y M, et al. Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12511-12517. DOI: 10.1021/acsami.7b01711http://dx.doi.org/10.1021/acsami.7b01711.
Aguila B, Sun Q, Cassady H, et al. Design strategies to enhance amidoxime chelators for uranium recovery[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 30919-30926. DOI: 10.1021/acsami.9b09532http://dx.doi.org/10.1021/acsami.9b09532.
Zhuang S T, Wang J L. Poly amidoxime functionalized carbon nanotube as an efficient adsorbent for removal of uranium from aqueous solution[J]. Journal of Molecular Liquids, 2020, 319: 114288. DOI: 10.1016/j.molliq. 2020.114288http://dx.doi.org/10.1016/j.molliq.2020.114288.
Mei D C, Liu L J, Li H, et al. Efficient uranium adsorbent with antimicrobial function constructed by grafting amidoxime groups on ZIF-90 via malononitrile intermediate[J]. Journal of Hazardous Materials, 2022, 422: 126872. DOI: 10.1016/j.jhazmat.2021.126872http://dx.doi.org/10.1016/j.jhazmat.2021.126872.
Xing Z, Hu J T, Wang M H, et al. Properties and evaluation of amidoxime-based UHMWPE fibrous adsorbent for extraction of uranium from seawater[J]. Science China Chemistry, 2013, 56(11): 1504-1509. DOI: 10.1007/s11426-013-5002-xhttp://dx.doi.org/10.1007/s11426-013-5002-x.
Ao J X, Zhang H J, Xu X, et al. A novel ion-imprinted amidoxime-functionalized UHMWPE fiber based on radiation-induced crosslinking for selective adsorption of uranium[J]. RSC Advances, 2019, 9(49): 28588-28597. DOI: 10.1039/c9ra05440ehttp://dx.doi.org/10.1039/c9ra05440e.
Xu L, Hu J T, Ma H J, et al. Amidoxime-based adsorbents prepared by cografting acrylic acid with acrylonitrile onto HDPE fiber for the recovery of uranium from seawater[J]. Nuclear Science and Techniques, 2017, 28(4): 45. DOI: 10.1007/s41365-017-0198-7http://dx.doi.org/10.1007/s41365-017-0198-7.
Oyola Y, Janke C J, Dai S. Synthesis, development, and testing of high-surface-area polymer-based adsorbents for the selective recovery of uranium from seawater[J]. Industrial & Engineering Chemistry Research, 2016, 55(15): 4149-4160. DOI: 10.1021/acs.iecr.5b03981http://dx.doi.org/10.1021/acs.iecr.5b03981.
Liu X Y, Liu H Z, Ma H J, et al. Adsorption of the uranyl ions on an amidoxime-based polyethylene nonwoven fabric prepared by preirradiation-induced emulsion graft polymerization[J]. Industrial & Engineering Chemistry Research, 2012, 51(46): 15089-15095. DOI: 10.1021/ie301965ghttp://dx.doi.org/10.1021/ie301965g.
Zhang M X, Gao Q H, Yang C G, et al. Preparation of amidoxime-based nylon-66 fibers for removing uranium from low-concentration aqueous solutions and simulated nuclear industry effluents[J]. Industrial & Engineering Chemistry Research, 2016, 55(40): 10523-10532. DOI: 10.1021/acs.iecr.6b02652http://dx.doi.org/10.1021/acs.iecr.6b02652.
Wang F X, Song Y J, Liang S H, et al. Polyamidoxime nanoparticles/polyvinyl alcohol composite chelating nanofibers prepared by centrifugal spinning for uranium extraction[J]. Reactive and Functional Polymers, 2021, 159: 104812. DOI: 10.1016/j.reactfunctpolym.2021. 104812http://dx.doi.org/10.1016/j.reactfunctpolym.2021.104812.
Omichi H, Katakai A, Sugo T, et al. A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater[J]. Separation Science and Technology, 1985, 20(2/3): 163-178. DOI: 10.1080/01496398508058357http://dx.doi.org/10.1080/01496398508058357.
Xu X, Zhang H J, Ao J X, et al. 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater[J]. Energy & Environmental Science, 2019, 12(6): 1979-1988. DOI: 10.1039/C9EE00626Ehttp://dx.doi.org/10.1039/C9EE00626E.
Chi F T, Hu S, Xiong J, et al. Adsorption behavior of uranium on polyvinyl alcohol-g-amidoxime: Physicochemical properties, kinetic and thermodynamic aspects[J]. Science China Chemistry, 2013, 56(11): 1495-1503. DOI: 10.1007/s11426-013-5003-9http://dx.doi.org/10.1007/s11426-013-5003-9.
Kim J, Tsouris C, Oyola Y, et al. Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment[J]. Industrial & Engineering Chemistry Research, 2014, 53(14): 6076-6083. DOI: 10.1021/ie4039828http://dx.doi.org/10.1021/ie4039828.
Das S, Tsouris C, Zhang C, et al. Enhancing uranium uptake by amidoxime adsorbent in seawater: an investigation for optimum alkaline conditioning parameters[J]. Industrial & Engineering Chemistry Research, 2016, 55(15): 4294-4302. DOI: 10.1021/acs.iecr.5b02735http://dx.doi.org/10.1021/acs.iecr.5b02735.
Kim J, Oyola Y, Tsouris C, et al. Characterization of uranium uptake kinetics from seawater in batch and flow-through experiments[J]. Industrial & Engineering Chemistry Research, 2013, 52(27): 9433-9440. DOI: 10. 1021/ie400587fhttp://dx.doi.org/10.1021/ie400587f.
Xu X, Yue Y R, Cai D, et al. Aqueous solution blow spinning of seawater‐stable polyamidoxime nanofibers from water‐soluble precursor for uranium extraction from seawater[J]. Small Methods, 2020, 4(12): 2000558. DOI: 10.1002/smtd.202000558http://dx.doi.org/10.1002/smtd.202000558.
Zhuang S T, Cheng R, Kang M, et al. Kinetic and equilibrium of U(VI) adsorption onto magnetic amidoxime-functionalized chitosan beads[J]. Journal of Cleaner Production, 2018, 188: 655-661. DOI: 10.1016/j.jclepro.2018.04.047http://dx.doi.org/10.1016/j.jclepro.2018.04.047.
Li N, Gao P, Chen H W, et al. Amidoxime modified Fe3O4@TiO2 particles for antibacterial and efficient uranium extraction from seawater[J]. Chemosphere, 2022, 287: 132137. DOI: 10.1016/j.chemosphere.2021. 132137http://dx.doi.org/10.1016/j.chemosphere.2021.132137.
Zhao S L, Feng T T, Feng L J, et al. Rapid recovery of uranium with magnetic-single-molecular amidoxime adsorbent[J]. Separation and Purification Technology, 2022, 287: 120524. DOI: 10.1016/j.seppur.2022.120524http://dx.doi.org/10.1016/j.seppur.2022.120524.
Yu J Q, Zhang H S, Liu Q, et al. A high-flux antibacterial poly(amidoxime)-polyacrylonitrile blend membrane for highly efficient uranium extraction from seawater[J]. Journal of Hazardous Materials, 2022, 440: 129735. DOI: 10.1016/j.jhazmat.2022.129735http://dx.doi.org/10.1016/j.jhazmat.2022.129735.
Wang D, Song J N, Wen J, et al. Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent[J]. Advanced Energy Materials, 2018, 8(33): 1802607. DOI: 10.1002/aenm.201802607http://dx.doi.org/10.1002/aenm.201802607.
Yuan Y H, Guo X, Feng L J, et al. Charge balanced anti-adhesive polyacrylamidoxime hydrogel membrane for enhancing uranium extraction from seawater[J]. Chemical Engineering Journal, 2021, 421: 127878. DOI: 10.1016/j.cej.2020.127878http://dx.doi.org/10.1016/j.cej.2020.127878.
Yu R, Lu Y R, Zhang X S, et al. Amidoxime-modified ultrathin polyethylene fibrous membrane for uranium extraction from seawater[J]. Desalination, 2022, 539: 115965. DOI: 10.1016/j.desal.2022.115965http://dx.doi.org/10.1016/j.desal.2022.115965.
Tafreshi O A, Mosanenzadeh S G, Karamikamkar S, et al. A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications[J]. Materials Today Chemistry, 2022, 23: 100736. DOI: 10.1016/j.mtchem.2021.100736http://dx.doi.org/10.1016/j.mtchem.2021.100736.
Shi S, Li B C, Qian Y X, et al. A simple and universal strategy to construct robust and anti-biofouling amidoxime aerogels for enhanced uranium extraction from seawater[J]. Chemical Engineering Journal, 2020, 397: 125337. DOI: 10.1016/j.cej.2020.125337http://dx.doi.org/10.1016/j.cej.2020.125337.
Zhang Z B, Dong Z M, Wang X X, et al. Ordered mesoporous polymer-carbon composites containing amidoxime groups for uranium removal from aqueous solutions[J]. Chemical Engineering Journal, 2018, 341: 208-217. DOI: 10.1016/j.cej.2018.02.044http://dx.doi.org/10.1016/j.cej.2018.02.044.
Sun Q, Aguila B, Perman J, et al. Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste[J]. Nature Communications, 2018, 9: 1644. DOI: 10.1038/s41467-018-04032-yhttp://dx.doi.org/10.1038/s41467-018-04032-y.
Yan B J, Ma C X, Gao J X, et al. An ion-crosslinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(10): e1906615. DOI: 10.1002/adma.201906615http://dx.doi.org/10.1002/adma.201906615.
Wang F H, Li H P, Liu Q, et al. A graphene oxide/amidoxime hydrogel for enhanced uranium capture[J]. Scientific Reports, 2016, 6: 19367. DOI: 10.1038/srep19367http://dx.doi.org/10.1038/srep19367.
Ma C X, Gao J X, Wang D, et al. Sunlight polymerization of poly(amidoxime) hydrogel membrane for enhanced uranium extraction from seawater[J]. Advanced Science , 2019, 6(13): 1900085. DOI: 10.1002/advs.201900085http://dx.doi.org/10.1002/advs.201900085.
Zhang C R, Cui W R, Niu C P, et al. rGO-based covalent organic framework hydrogel for synergistically enhance uranium capture capacity through photothermal desalination[J]. Chemical Engineering Journal, 2022, 428: 131178. DOI: 10.1016/j.cej.2021.131178http://dx.doi.org/10.1016/j.cej.2021.131178.
Hazer O, Kartal S. Use of amidoximated hydrogel for removal and recovery of U(VI) ion from water samples[J]. Talanta, 2010, 82(5): 1974-1979. DOI: 10.1016/j.talanta.2010.08.023http://dx.doi.org/10.1016/j.talanta.2010.08.023.
Liu R R, Wen S X, Sun Y, et al. A nanoclay enhanced Amidoxime-Functionalized Double-Network hydrogel for fast and massive uranium recovery from seawater[J]. Chemical Engineering Journal, 2021, 422: 130060. DOI: 10.1016/j.cej.2021.130060http://dx.doi.org/10.1016/j.cej.2021.130060.
Gao J X, Yuan Y H, Yu Q H, et al. Bio-inspired antibacterial cellulose paper-poly(amidoxime) composite hydrogel for highly efficient uranium(VI) capture from seawater[J]. Chemical Communications (Cambridge, England), 2020, 56(28): 3935-3938. DOI: 10.1039/c9cc09936khttp://dx.doi.org/10.1039/c9cc09936k.
Yang S S, Huang Y W, Huang G L, et al. Preparation of amidoxime-functionalized biopolymer/graphene oxide gels and their application in selective adsorption separation of U(VI) from aqueous solution[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324(2): 847-855. DOI: 10.1007/s10967-020-07101-zhttp://dx.doi.org/10.1007/s10967-020-07101-z.
Bai X, Tang J, Li H, et al. Self-Emulsifying air-in-water HIPEs-Templated construction of amidoxime functionalized and chain entanglement enhanced macroporous hydrogel for fast and selective uranium extraction[J]. Chemical Engineering Journal, 2023, 452: 138982. DOI: 10.1016/j.cej.2022.138982http://dx.doi.org/10.1016/j.cej.2022.138982.
Jiao G J, Ma J L, Zhang J Q, et al. Porous and biofouling-resistant amidoxime-based hybrid hydrogel with excellent interfacial compatibility for high-performance recovery of uranium from seawater[J]. Separation and Purification Technology, 2022, 287: 120571. DOI: 10.1016/j.seppur.2022.120571http://dx.doi.org/10.1016/j.seppur.2022.120571.
Liu T, Xie Z J, Chen M W, et al. Mussel-inspired dual-crosslinked polyamidoxime photothermal hydrogel with enhanced mechanical strength for highly efficient and selective uranium extraction from seawater[J]. Chemical Engineering Journal, 2022, 430: 133182. DOI: 10.1016/j.cej.2021.133182http://dx.doi.org/10.1016/j.cej.2021.133182.
Ahmad Z, Li Y, Yang J J, et al. A membrane-supported bifunctional poly(amidoxime-ethyleneimine) network for enhanced uranium extraction from seawater and wastewater[J]. Journal of Hazardous Materials, 2022, 425: 127995. DOI: 10.1016/j.jhazmat.2021.127995http://dx.doi.org/10.1016/j.jhazmat.2021.127995.
Xue Y, Cao M, Gao J Z, et al. Electroadsorption of uranium on amidoxime modified graphite felt[J]. Separation and Purification Technology, 2021, 255: 117753. DOI: 10.1016/j.seppur.2020.117753http://dx.doi.org/10.1016/j.seppur.2020.117753.
Liu X L, Xie Y H, Hao M J, et al. Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst[J]. Advanced Science, 2022, 9(23): e2201735. DOI: 10.1002/advs. 202201735http://dx.doi.org/10.1002/advs.202201735.
Ahmad Z, Li Y, Ali S, et al. Benignly-fabricated supramolecular poly(amidoxime)-alginate-poly(acrylic acid) beads synergistically enhance uranyl capture from seawater[J]. Chemical Engineering Journal, 2022, 441: 136076. DOI: 10.1016/j.cej.2022.136076http://dx.doi.org/10.1016/j.cej.2022.136076.
Xiao F, Cheng Y X, Zhou P C, et al. Fabrication of novel carboxyl and amidoxime groups modified luffa fiber for highly efficient removal of uranium(VI) from uranium mine water[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105681. DOI: 10.1016/j.jece. 2021.105681http://dx.doi.org/10.1016/j.jece.2021.105681.
Kawai T, Saito K, Sugita K, et al. Preparation of hydrophilic amidoxime fibers by cografting acrylonitrile and methacrylic acid from an optimized monomer composition[J]. Radiation Physics and Chemistry, 2000, 59(4): 405-411. DOI: 10.1016/S0969-806X(00)00298-Xhttp://dx.doi.org/10.1016/S0969-806X(00)00298-X.
Kawai T, Saito K, Sugita K, et al. Comparison of amidoxime adsorbents prepared by cografting methacrylic acid and 2-hydroxyethyl methacrylate with acrylonitrile onto polyethylene[J]. Industrial & Engineering Chemistry Research, 2000, 39(8): 2910-2915. DOI: 10.1021/ie990474ahttp://dx.doi.org/10.1021/ie990474a.
Oyola Y, Dai S. High surface-area amidoxime-based polymer fibers co-grafted with various acid monomers yielding increased adsorption capacity for the extraction of uranium from seawater[J]. Dalton Transactions, 2016, 45(21): 8824-8834. DOI: 10.1039/C6DT01114Dhttp://dx.doi.org/10.1039/C6DT01114D.
Yu B X, Zhang L, Ye G, et al. De novo synthesis of bifunctional conjugated microporous polymers for synergistic coordination mediated uranium entrapment[J]. Nano Research, 2021, 14(3): 788-796. DOI: 10.1007/s12274-020-3217-7http://dx.doi.org/10.1007/s12274-020-3217-7.
Wiechert A I, Liao W P, Hong E, et al. Influence of hydrophilic groups and metal-ion adsorption on polymer-chain conformation of amidoxime-based uranium adsorbents[J]. Journal of Colloid and Interface Science, 2018, 524: 399-408. DOI: 10.1016/j.jcis.2018.04.021http://dx.doi.org/10.1016/j.jcis.2018.04.021.
Liu X Y, Xie S B, Wang G H, et al. Fabrication of environmentally sensitive amidoxime hydrogel for extraction of uranium (VI) from an aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611: 125813. DOI: 10.1016/j.colsurfa.2020.125813http://dx.doi.org/10.1016/j.colsurfa.2020.125813.
Ting C F, Jie X, Wei H J, et al. Improvement in uranium adsorption properties of amidoxime-based adsorbent through cografting of amine group[J]. Journal of Dispersion Science and Technology, 2013, 34(4): 604-610. DOI: 10.1080/01932691.2012.666188http://dx.doi.org/10.1080/01932691.2012.666188.
Kawai T, Saito K, Sugita K, et al. Comparison of amidoxime adsorbents prepared by cografting methacrylic acid and 2-hydroxyethyl methacrylate with acrylonitrile onto polyethylene[J]. Industrial & Engineering Chemistry Research, 2000, 39(8): 2910-2915. DOI: 10.1021/ie990474ahttp://dx.doi.org/10.1021/ie990474a.
Choi S H, Nho Y C. Adsorption of UO2+2 by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group[J]. Radiation Physics and Chemistry, 2000, 57(2): 187-193. DOI: 10.1016/S0969-806X(99)00348-5http://dx.doi.org/10.1016/S0969-806X(99)00348-5.
Li R, Pang L J, Ma H J, et al. Optimization of molar content of amidoxime and acrylic acid in UHMWPE fibers for improvement of seawater uranium adsorption capacity[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311(3): 1771-1779. DOI: 10.1007/s10967-016-5117-6http://dx.doi.org/10.1007/s10967-016-5117-6.
Meng Y J, Wang Y D, Liu L J, et al. MOF modified with copolymers containing carboxyl and amidoxime groups and high efficiency U(VI) extraction from seawater[J]. Separation and Purification Technology, 2022, 291: 120946. DOI: 10.1016/j.seppur.2022.120946http://dx.doi.org/10.1016/j.seppur.2022.120946.
Sun Y B, Shao D D, Chen C L, et al. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline[J]. Environmental Science & Technology, 2013, 47(17): 9904-9910. DOI: 10.1021/es401174nhttp://dx.doi.org/10.1021/es401174n.
Sun Y B, Yang S B, Chen Y, et al. Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study[J]. Environmental Science & Technology, 2015, 49(7): 4255-4262. DOI: 10.1021/es505590jhttp://dx.doi.org/10.1021/es505590j.
Romanchuk A Y, Slesarev A S, Kalmykov S N, et al. Graphene oxide for effective radionuclide removal[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(7): 2321-2327. DOI: 10.1039/c2cp44593jhttp://dx.doi.org/10.1039/c2cp44593j.
Wang Y, Hu X W, Liu Y T, et al. Assembly of three-dimensional ultralight poly(amidoxime)/graphene oxide nanoribbons aerogel for efficient removal of uranium(VI) from water samples[J]. Science of the Total Environment, 2021, 765: 142686. DOI: 10.1016/j.scitotenv.2020. 142686http://dx.doi.org/10.1016/j.scitotenv.2020.142686.
Bolotin D S, Bokach N A, Kukushkin V Y. Coordination chemistry and metal-involving reactions of amidoximes: relevance to the chemistry of oximes and oxime ligands[J]. Coordination Chemistry Reviews, 2016, 313: 62-93. DOI: 10.1016/j.ccr.2015.10.005http://dx.doi.org/10.1016/j.ccr.2015.10.005.
Parker B F, Zhang Z, Rao L, et al. An overview and recent progress in the chemistry of uranium extraction from seawater[J]. Dalton Transactions, 2018, 47(3): 639-644. DOI: 10.1039/c7dt04058jhttp://dx.doi.org/10.1039/c7dt04058j.
Vukovic S, Watson L A, Kang S O, et al. How amidoximate binds the uranyl cation[J]. Inorganic Chemistry, 2012, 51(6): 3855-3859. DOI: 10.1021/ic300062shttp://dx.doi.org/10.1021/ic300062s.
Stemper J, Tuo W, Mazarío E, et al. Synthesis of bis(amidoxime)s and evaluation of their properties as uranyl-complexing agents[J]. Tetrahedron, 2018, 74(21): 2641-2649. DOI: 10.1016/j.tet.2018.04.016http://dx.doi.org/10.1016/j.tet.2018.04.016.
Guo X J, Wang Y X, Li C, et al. Optimum complexation of uranyl with amidoxime in aqueous solution under different pH levels: density functional theory calculations[J]. Molecular Physics, 2015, 113(11): 1327-1336. DOI: 10.1080/00268976.2014.993732http://dx.doi.org/10.1080/00268976.2014.993732.
Barber P S, Kelley S P, Rogers R D. Highly selective extraction of the uranyl ion with hydrophobic amidoxime-functionalized ionic liquidsvia η2 coordination[J]. RSC Advances, 2012, 2(22): 8526-8530. DOI: 10.1039/C2RA21344Chttp://dx.doi.org/10.1039/C2RA21344C.
Zhang L J, Su J, Yang S T, et al. Extended X-ray absorption fine structure and density functional theory studies on the complexation mechanism of amidoximate ligand to uranyl carbonate[J]. Industrial & Engineering Chemistry Research, 2016, 55(15): 4224-4230. DOI: 10.1021/acs.iecr.5b03217http://dx.doi.org/10.1021/acs.iecr.5b03217.
Abney C W, Liu S B, Lin W B. Tuning amidoximate to enhance uranyl binding: a density functional theory study[J]. The Journal of Physical Chemistry A, 2013, 117(45): 11558-11565. DOI: 10.1021/jp408460xhttp://dx.doi.org/10.1021/jp408460x.
0
浏览量
31
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构