1.南宁市第一人民医院 南宁 530000
2.广西医科大学 南宁 530000
3.广西壮族自治区人民医院 南宁 530000
宁艳,女,1994年2月生,2022年于广西医科大学获硕士学位,主要从事再生医学基础与临床研究
黎洪棉,博士,主任医师,硕士生导师,E-mail: lihongmian@gxmu.edu.cn
扫 描 看 全 文
宁艳, 甘慧敏, 黄东琳, 等. 脂肪干细胞及细胞因子在皮肤放射性损伤修复中的研究进展[J]. 辐射研究与辐射工艺学报, 2023,41(2):020102.
NING Yan, GAN Huimin, HUANG Donglin, et al. Advances in the study of adipose stem cells and cytokines in the repair of radiation skin damage[J]. Journal of Radiation Research and Radiation Processing, 2023,41(2):020102.
宁艳, 甘慧敏, 黄东琳, 等. 脂肪干细胞及细胞因子在皮肤放射性损伤修复中的研究进展[J]. 辐射研究与辐射工艺学报, 2023,41(2):020102. DOI: 10.11889/j.1000-3436.2022-0100.
NING Yan, GAN Huimin, HUANG Donglin, et al. Advances in the study of adipose stem cells and cytokines in the repair of radiation skin damage[J]. Journal of Radiation Research and Radiation Processing, 2023,41(2):020102. DOI: 10.11889/j.1000-3436.2022-0100.
本文就当前脂肪干细胞(Ddipose-derived stem cells,ADSCs)与富血小板纤维蛋白(Platelet-rich fibrin,PRF)治疗皮肤软组织放射性损伤的研究概况进行探讨。相对于传统的治疗方式,ADSCs与PRF对于改善皮肤放射性损伤具有独特的优势。放射会使皮肤受到氧化损伤并产生细胞凋亡,从而引起红斑水肿、湿性脱屑等组织病理学改变;而ADSCs的抗凋亡、旁分泌生长因子、抗瘢痕的功能可以针对皮肤放射性损伤机制,减轻放射性损伤创面炎症,提高微血管密度,同时促进创面再上皮化,从而有效地改善皮肤放射性损伤;PRF释放的高浓度生长因子可明显提高创面的愈合率,并且PRF的生物特性能进一步优化ADSCs修复损伤的作用。结合ADSCs联合PRF治疗皮肤放射性损伤的研究现状,对今后的实验研究和临床治疗方向进行展望。
This article discusses the current research status of adipose-derived stem cells (ADSCs) and platelet-rich fibrin (PRF) in the treatment of soft tissue radiation injury in the skin. ADSCs and PRF have unique advantages over conventional treatment modalities for improving cutaneous radiation injury. Radiation causes oxidative damage to skin and skin cells subsequently undergo apoptosis, which causes histopathological changes such as erythema edema and wet desquamation. The anti-apoptotic, paracrine growth factor and anti-scarring functions of ADSCs can concomitantly target the mechanism underlying skin radiation injury, reduce inflammation of radiation-injured wounds, increase microvascular density, and promote re-epithelialization of wounds, thereby effectively improving skin radiation injury. The high concentration of growth factors released from PRF can significantly increase the healing rate of wounds, and the biological properties of PRF can further optimize the activity of ADSCs in repairing skin damage. Future experimental research and clinical treatment directions may involve combining the current research status of ADSCs with PRF in the treatment of cutaneous radiation injury.
皮肤放射性损伤脂肪干细胞富血小板纤维蛋白损伤修复抗瘢痕
Radiation skin damageAdipose stem cellsPlatelet-rich fibrinInjury repairAnti-cicatricial
Baskar R, Itahana K. Radiation therapy and cancer control in developing countries: can we save more lives? [J]. International Journal of Medical Sciences, 2017, 14(1): 13-17. DOI: 10.7150/ijms.17288http://dx.doi.org/10.7150/ijms.17288.
Rosenthal A, Israilevich R, Moy R. Management of acute radiation dermatitis: a review of the literature and proposal for treatment algorithm[J]. Journal of the American Academy of Dermatology, 2019, 81(2): 558-567. DOI: 10.1016/j.jaad.2019.02.047http://dx.doi.org/10.1016/j.jaad.2019.02.047.
胡花婷, 何侃成, 李东芳. 放射性皮炎中西医防治研究现状[J]. 中医肿瘤学杂志, 2019, 1(3):80-84. DOI: 10. 19811/j.cnki.issn2096-6628.2019.03.021http://dx.doi.org/10.19811/j.cnki.issn2096-6628.2019.03.021.
HU Huating, HE Kancheng, LI Dongfang. Research status of traditional Chinese and Western medicine prevention and treatment of radiodermatitis[J]. Journal of Traditional Chinese Medicine Oncology, 2019, 1(3): 80-84. DOI: 10.19811/j.cnki.issn2096-6628.2019.03.021http://dx.doi.org/10.19811/j.cnki.issn2096-6628.2019.03.021.
Ma J, Yan X, Lin Y, et al. Hepatocyte growth factor secreted from human adipose-derived stem cells inhibits fibrosis in hypertrophic scar fibroblasts[J]. Current Molecular Medicine, 2020, 20(7): 558-571. DOI: 10. 2174/1566524020666200106095745http://dx.doi.org/10.2174/1566524020666200106095745.
Sabol R A, Bowles A C, Côté A, et al. Therapeutic potential of adipose stem cells[J]. Advances in Experimental Medicine and Biology, 2021, 1341: 15-25. DOI: 10.1007/5584_2018_248http://dx.doi.org/10.1007/5584_2018_248.
Choukroun J, Diss A, Simonpieri A, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part IV: clinical effects on tissue healing[J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 2006, 101(3): e56-e60. DOI: 10.1016/j.tripleo.2005.07.011http://dx.doi.org/10.1016/j.tripleo.2005.07.011.
Kornsuthisopon C, Pirarat N, Osathanon T, et al. Autologous platelet-rich fibrin stimulates canine periodontal regeneration[J]. Scientific Reports, 2020, 10(1): 1850. DOI: 10.1038/s41598-020-58732-xhttp://dx.doi.org/10.1038/s41598-020-58732-x.
Singh M, Alavi A, Wong R, et al. Radiodermatitis: a review of our current understanding[J]. American Journal of Clinical Dermatology, 2016, 17(3): 277-292. DOI: 10. 1007/s40257-016-0186-4http://dx.doi.org/10.1007/s40257-016-0186-4.
Kim J H, Kolozsvary A J J, Jenrow K A, et al. Mechanisms of radiation-induced skin injury and implications for future clinical trials[J]. International Journal of Radiation Biology, 2013, 89(5): 311-318. DOI: 10.3109/09553002.2013.765055http://dx.doi.org/10.3109/09553002.2013.765055.
Coates P J, Appleyard M V C L, Murray K, et al. Differential contextual responses of normal human breast epithelium to ionizing radiation in a mouse xenograft model[J]. Cancer Research, 2010, 70(23): 9808-9815. DOI: 10.1158/0008-5472.CAN-10-1118http://dx.doi.org/10.1158/0008-5472.CAN-10-1118.
Huang R X, Zhou P K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer[J]. Signal Transduction and Targeted Therapy, 2020, 5: 60. DOI: 10.1038/s41392-020-0150-xhttp://dx.doi.org/10.1038/s41392-020-0150-x.
Chinnapaka S, Yang K S, Samadi Y, et al. Allogeneic adipose-derived stem cells mitigate acute radiation syndrome by the rescue of damaged bone marrow cells from apoptosis[J]. Stem Cells Translational Medicine, 2021, 10(7): 1095-1114. DOI: 10.1002/sctm.20-0455http://dx.doi.org/10.1002/sctm.20-0455.
刘阳, 李晨晨, 陈宇彤, 等. 放射性皮肤损伤的炎症反应及机制研究[J]. 医用生物力学, 2019, 34(S1): 168.
LIU Yang, LI Chenchen, CHEN Yutong, et al. Study on inflammatory reaction and mechanism of radiation-induced skin injury[J]. Journal of Medical Biomechanics, 2019, 34(S1): 168.
Xue J, Yu C X, Sheng W J, et al. The Nrf2/GCH1/BH4 axis ameliorates radiation-induced skin injury by modulating the ROS cascade[J]. The Journal of Investigative Dermatology, 2017, 137(10): 2059-2068. DOI: 10.1016/j.jid.2017.05.019http://dx.doi.org/10.1016/j.jid.2017.05.019.
Shimura T. The role of mitochondrial oxidative stress and the tumor microenvironment in radiation-related cancer[J]. Journal of Radiation Research, 2021, 62(Supplement_1): i36-i43. DOI: 10.1093/jrr/rraa090http://dx.doi.org/10.1093/jrr/rraa090.
Cao J M, Zhu W, Yu D J, et al. The involvement of SDF-1α/CXCR4 axis in radiation-induced acute injury and fibrosis of skin[J]. Radiation Research, 2019, 192(4): 410-421. DOI: 10.1667/RR15384.1http://dx.doi.org/10.1667/RR15384.1.
Zuk P A, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Engineering, 2001, 7(2): 211-228. DOI: 10.1089/107632701300062859http://dx.doi.org/10.1089/107632701300062859.
Lin Y Y, Li X W, Fan C H, et al. Cardioprotective effects of rat adipose‑derived stem cells differ under normoxic/physioxic conditions and are associated with paracrine factor secretion[J]. International Journal of Molecular Medicine, 2020, 45(5): 1591-1600. DOI: 10.3892/ijmm. 2020.4524http://dx.doi.org/10.3892/ijmm.2020.4524.
Yao C L, Zhou Y, Wang H, et al. Adipose-derived stem cells alleviate radiation-induced dermatitis by suppressing apoptosis and downregulating cathepsin F expression[J]. Stem Cell Research & Therapy, 2021, 12(1): 447. 10.1186/s13287-021-02516-1http://dx.doi.org/10.1186/s13287-021-02516-1
Wen Y P, Guo Y, Huang Z J, et al. Adipose‑derived mesenchymal stem cells attenuate cisplatin‑induced apoptosis in epithelial ovarian cancer cells[J]. Molecular Medicine Reports, 2017, 16(6): 9587-9592. DOI: 10. 3892/mmr.2017.7783http://dx.doi.org/10.3892/mmr.2017.7783.
Chen Z H, Han X Y, Ouyang X, et al. Transplantation of induced pluripotent stem cell-derived mesenchymal stem cells improved erectile dysfunction induced by cavernous nerve injury[J]. Theranostics, 2019, 9(22): 6354-6368. DOI: 10.7150/thno.34008http://dx.doi.org/10.7150/thno.34008.
Zhang W, Bai X, Zhao B, et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway[J]. Experimental Cell Research, 2018, 370(2): 333-342. DOI: 10.1016/j.yexcr. 2018.06.035http://dx.doi.org/10.1016/j.yexcr.2018.06.035.
Bowles A C, Wise R M, Gerstein B Y, et al. Adipose stromal vascular fraction attenuates T H1 cell-mediated pathology in a model of multiple sclerosis[J]. Journal of Neuroinflammation, 2018, 15(1): 77. DOI: 10.1186/s12974-018-1099-3http://dx.doi.org/10.1186/s12974-018-1099-3.
Tang Y, Pan Z Y, Zou Y, et al. A comparative assessment of adipose-derived stem cells from subcutaneous and visceral fat as a potential cell source for knee osteoarthritis treatment[J]. Journal of Cellular and Molecular Medicine, 2017, 21(9): 2153-2162. DOI: 10. 1111/jcmm.13138http://dx.doi.org/10.1111/jcmm.13138.
Rehman J, Traktuev D, Li J L, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells[J]. Circulation, 2004, 109(10): 1292-1298. DOI: 10.1161/01.CIR.0000121425.42966.F1http://dx.doi.org/10.1161/01.CIR.0000121425.42966.F1.
Huang S P, Huang C H, Shyu J F, et al. Promotion of wound healing using adipose-derived stem cells in radiation ulcer of a rat model[J]. Journal of Biomedical Science, 2013, 20(1): 51. DOI: 10.1186/1423-0127-20-51http://dx.doi.org/10.1186/1423-0127-20-51.
刘志燕, 饶振, 盛小伍, 等. 脂肪干细胞对大鼠急性放射性皮肤损伤的干预作用[J]. 中南大学学报(医学版), 2019(2): 150-157. 10.11817/j.issn.1672-7347.2019.02.006http://dx.doi.org/10.11817/j.issn.1672-7347.2019.02.006
LIU Zhiyan, RAO Zhen, SHENG Xiaowu, et al. Effect of adipose-derived stem cells on radiation-induced acute skin injury in rats[J]. Journal of Central South University (Medical Science), 2019(2): 150-157. 10.11817/j.issn.1672-7347.2019.02.006http://dx.doi.org/10.11817/j.issn.1672-7347.2019.02.006
Foubert P, Doyle-Eisele M, Gonzalez A, et al. Development of a combined radiation and full thickness burn injury minipig model to study the effects of uncultured adipose-derived regenerative cell therapy in wound healing[J]. International Journal of Radiation Biology, 2017, 93(3): 340-350. DOI: 10.1080/09553002. 2017.1242814http://dx.doi.org/10.1080/09553002.2017.1242814.
Akita S, Yoshimoto H, Ohtsuru A, et al. Autologous adipose-derived regenerative cells are effective for chronic intractable radiation injuries[J]. Radiation Protection Dosimetry, 2012, 151(4): 656-660. DOI: 10. 1093/rpd/ncs176http://dx.doi.org/10.1093/rpd/ncs176.
Diaz Deleon N M, Adem S, Lavin C V, et al. Angiogenic CD34+CD146+ adipose-derived stromal cells augment recovery of soft tissue after radiotherapy[J]. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15(12): 1105-1117. DOI: 10.1002/term.3253http://dx.doi.org/10.1002/term.3253.
Liu J C, Qiu P, Qin J B, et al. Allogeneic adipose-derived stem cells promote ischemic muscle repair by inducing M2 macrophage polarization via the HIF-1α/IL-10 pathway[J]. Stem Cells, 2020, 38(10): 1307-1320. DOI: 10.1002/stem.3250http://dx.doi.org/10.1002/stem.3250.
Xie F, Teng L, Xu J J, et al. Adipose-derived mesenchymal stem cells inhibit cell proliferation and migration and suppress extracellular matrix synthesis in hypertrophic-scar and keloid fibroblasts[J]. Experimental and Therapeutic Medicine, 2021, 21(2): 139. DOI: 10. 3892/etm.2020.9571http://dx.doi.org/10.3892/etm.2020.9571.
Borrelli M R, Patel R A, Adem S, et al. The antifibrotic adipose-derived stromal cell: grafted fat enriched with CD74+ adipose-derived stromal cells reduces chronic radiation-induced skin fibrosis[J]. Stem Cells Translational Medicine, 2020, 9(11): 1401-1413. DOI: 10.1002/sctm.19-0317http://dx.doi.org/10.1002/sctm.19-0317.
Wu S H, Shirado T, Mashiko T, et al. Therapeutic effects of human adipose-derived products on impaired wound healing in irradiated tissue[J]. Plastic and Reconstructive Surgery, 2018, 142(2): 383-391. DOI: 10.1097/PRS. 0000000000004609http://dx.doi.org/10.1097/PRS.0000000000004609.
Zhou Z Q, Chen Y, Chai M, et al. Adipose extracellular matrix promotes skin wound healing by inducing the differentiation of adipose‑derived stem cells into fibroblasts[J]. International Journal of Molecular Medicine, 2019, 43(2): 890-900. DOI: 10.3892/ijmm. 2018.4006http://dx.doi.org/10.3892/ijmm.2018.4006.
Jackson W M, Nesti L J, Tuan R S. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing[J]. Stem Cell Research & Therapy, 2012, 3(3): 20. DOI: 10.1186/scrt111http://dx.doi.org/10.1186/scrt111.
Yu Y J, Shen J, Fang G Z, et al. Use of autologous platelet rich fibrin-based bioactive membrane in pressure ulcer healing in rats[J]. Journal of Wound Care, 2019, 28(Sup4): S23-S30. DOI: 10.12968/jowc.2019.28.Sup4.S23http://dx.doi.org/10.12968/jowc.2019.28.Sup4.S23.
Fortunato L, Barone S, Bennardo F, et al. Management of facial pyoderma gangrenosum using platelet-rich fibrin: a technical report[J]. Journal of Oral and Maxillofacial Surgery, 2018, 76(7): 1460-1463. DOI: 10.1016/j.joms. 2018.01.012http://dx.doi.org/10.1016/j.joms.2018.01.012.
Vaheb M, Karrabi M, Khajeh M, et al. Evaluation of the effect of platelet-rich fibrin on wound healing at split-thickness skin graft donor sites: a randomized, placebo-controlled, triple-blind study[J]. The International Journal of Lower Extremity Wounds, 2021, 20(1): 29-36. DOI: 10.1177/1534734619900432http://dx.doi.org/10.1177/1534734619900432.
Wong C C, Huang Y M, Chen C H, et al. Cytokine and growth factor delivery from implanted platelet-rich fibrin enhances rabbit Achilles tendon healing[J]. International Journal of Molecular Sciences, 2020, 21(9): 3221. DOI: 10.3390/ijms21093221http://dx.doi.org/10.3390/ijms21093221.
Dohan Ehrenfest D M, Del Corso M, Diss A, et al. Three-dimensional architecture and cell composition of a Choukroun's platelet-rich fibrin clot and membrane[J]. Journal of Periodontology, 2010, 81(4): 546-55. DOI: 10. 1902/jop.2009.090531http://dx.doi.org/10.1902/jop.2009.090531.
Du J, Mei S, Guo L, et al. Platelet-rich fibrin/aspirin complex promotes alveolar bone regeneration in periodontal defect in rats[J]. Journal of Periodontal Research, 2018, 53(1): 47-56. DOI: 10.1111/jre.12485http://dx.doi.org/10.1111/jre.12485.
Chen Y T, Chang Y C. Use of platelet-rich fibrin and surgical approach for combined treatment of osteoradionecrosis: a case report[J]. The Journal of International Medical Research, 2019, 47(8): 3998-4003. DOI: 10.1177/0300060519862468http://dx.doi.org/10.1177/0300060519862468.
Maluf G, Caldas R J, Fregnani E R, et al. Leukocyte- and platelet-rich fibrin as an adjuvant to the surgical approach for osteoradionecrosis: a case report[J]. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 2020, 46(2): 150-154. DOI: 10.5125/jkaoms.2020.46. 2.150http://dx.doi.org/10.5125/jkaoms.2020.46.2.150.
Palma L F, Marcucci M, Remondes C M, et al. Leukocyte- and platelet-rich fibrin does not provide any additional benefit for tooth extraction in head and neck cancer patients post-radiotherapy: a randomized clinical trial[J]. Medicina Oral, Patologia Oraly Cirugia Bucal, 2020, 25(6): e799-e804. DOI: 10.4317/medoral.23804http://dx.doi.org/10.4317/medoral.23804.
Huang H, Tang X K, Li S N, et al. Advanced platelet-rich fibrin promotes the paracrine function and proliferation of adipose-derived stem cells and contributes to micro-autologous fat transplantation by modulating HIF-1α and VEGF[J]. Annals of Translational Medicine, 2022, 10(2): 60. DOI: 10.21037/atm-21-6812http://dx.doi.org/10.21037/atm-21-6812.
Liang Z J, Huang D L, Nong W H, et al. Advanced-platelet-rich fibrin extract promotes adipogenic and osteogenic differentiation of human adipose-derived stem cells in a dose-dependent manner in vitro[J]. Tissue & Cell, 2021, 71: 101506. DOI: 10.1016/j.tice.2021.101506http://dx.doi.org/10.1016/j.tice.2021.101506.
Khademi B, Safari S, Mosleh-Shirazi M A, et al. Therapeutic effect of adipose-derived mesenchymal stem cells (ASCs) on radiation-induced skin damage in rats[J]. Stem Cell Investigation, 2020, 7: 12. DOI: 10.21037/sci-2019-045http://dx.doi.org/10.21037/sci-2019-045.
Wang Z, Xing H, Hu H, et al. Intraglandular transplantation of adipose-derived stem cells combined with platelet-rich fibrin extract for the treatment of irradiation-induced salivary gland damage[J]. Experimental and Therapeutic Medicine, 2018, 15(1): 795-805. DOI: 10.3892/etm.2017. 5497http://dx.doi.org/10.3892/etm.2017.5497.
Chen Y Z. Improvement in the repair of defects in maxillofacial soft tissue in irradiated minipigs by a mixture of adipose-derived stem cells and platelet-rich fibrin[J]. British Journal of Oral and Maxillofacial Surgery, 2014, 52(8): 740-745. DOI: 10.1016/j.bjoms. 2014.06.006http://dx.doi.org/10.1016/j.bjoms.2014.06.006.
Law B, Mohd Yunus S S, Ramli R. Autogenous free fat graft combined with platelet-rich fibrin heals a refractory mandibular osteoradionecrosis[J]. La Clinica Terapeutica, 2020, 171(2): e110-e113. DOI: 10.7417/CT.2020.2199http://dx.doi.org/10.7417/CT.2020.2199.
Chuang M H, Ho L H, Kuo T F, et al. Regenerative potential of platelet-rich fibrin releasate combined with adipose tissue-derived stem cells in a rat sciatic nerve injury model[J]. Cell Transplantation, 2020, 29: 096368972091943. DOI: 10.1177/0963689720919438http://dx.doi.org/10.1177/0963689720919438.
Sheu S Y, Hsu Y K, Chuang M H, et al. Enhanced bone formation in osteoporotic mice by a novel transplant combined with adipose-derived stem cells and platelet-rich fibrin releasates[J]. Cell Transplant, 2020, 29: 963689720927398. DOI: 10.1177/0963689720927398http://dx.doi.org/10.1177/0963689720927398.
Yao Y, Dong Z Q, Liao Y J, et al. Adipose extracellular matrix/stromal vascular fraction gel: a novel adipose tissue-derived injectable for stem cell therapy[J]. Plastic and Reconstructive Surgery, 2017, 139(4): 867-879. DOI: 10.1097/PRS.0000000000003214http://dx.doi.org/10.1097/PRS.0000000000003214.
Zhang P, Feng J, Liao Y, et al. Ischemic flap survival improvement by composition-selective fat grafting with novel adipose tissue derived product - stromal vascular fraction gel[J]. Biochemical and Biophysical Research Communications, 2018, 495(3): 2249-2256. DOI: 10. 1016/j.bbrc.2017.11.196http://dx.doi.org/10.1016/j.bbrc.2017.11.196.
Cardoso A L, Bachion M M, de Miranda Morais J, et al. Adipose tissue stromal vascular fraction in the treatment of full thickness burns in rats[J]. Acta Cirurgica Brasileira, 2016, 31(9): 578-585. DOI: 10.1590/S0102-865020160090000002http://dx.doi.org/10.1590/S0102-865020160090000002.
Deng C L, Wang L Y, Feng J W, et al. Treatment of human chronic wounds with autologous extracellular matrix/stromal vascular fraction gel: a STROBE-compliant study[J]. Medicine, 2018, 97(32): e11667. DOI: 10.1097/MD.0000000000011667http://dx.doi.org/10.1097/MD.0000000000011667.
Urlaub K M, Ranganathan K, Lynn J V, et al. Intraoperative stromal vascular fraction therapy improves histomorphometric and vascular outcomes in irradiated mandibular fracture repair[J]. Plastic and Reconstructive Surgery, 2021, 147(4): 865-874. DOI: 10.1097/PRS. 0000000000007781http://dx.doi.org/10.1097/PRS.0000000000007781.
Yu D J, Zhang S J, Mo W, et al. Transplantation of the stromal vascular fraction (SVF) mitigates severe radiation-induced skin injury[J]. Radiation Research, 2021, 196(3): 250-260. DOI: 10.1667/RADE-20-00156.1http://dx.doi.org/10.1667/RADE-20-00156.1.
Li Z, Gan H M, Liang A R, et al. Promoting repair of highly purified stromal vascular fraction gel combined with advanced platelet-rich fibrin extract for irradiated skin and soft tissue injury[J]. Annals of Translational Medicine, 2022, 10(17): 933. DOI: 10.21037/atm-22-3956http://dx.doi.org/10.21037/atm-22-3956.
Zhai Y N, Wu W F, Xi X W, et al. Adipose-derived stem cells promote proliferation and invasion in cervical cancer by targeting the HGF/c-MET pathway[J]. Cancer Management and Research, 2020, 12: 11823-11832. DOI: 10.2147/CMAR.S277130http://dx.doi.org/10.2147/CMAR.S277130.
Sharaf K, Eggersmann T K, Haider S P, et al. Human adipose-derived stem/stromal cells promote proliferation and migration in head and neck cancer cells[J]. Cancers, 2021, 13(11): 2751. DOI: 10.3390/cancers13112751http://dx.doi.org/10.3390/cancers13112751.
Mazur S, Zołocińska A, Siennicka K, et al. Safety of adipose-derived cell (stromal vascular fraction — SVF) augmentation for surgical breast reconstruction in cancer patients[J]. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University, 2018, 27(8): 1085-1090. DOI: 10.17219/acem/70798http://dx.doi.org/10.17219/acem/70798.
Pérez-Cano R, Vranckx J J, Lasso J M, et al. Prospective trial of adipose-derived regenerative cell (ADRC)-enriched fat grafting for partial mastectomy defects: the RESTORE-2 trial[J]. European Journal of Surgical Oncology (EJSO), 2012, 38(5): 382-389. DOI: 10.1016/j.ejso.2012.02.178http://dx.doi.org/10.1016/j.ejso.2012.02.178.
Kronowitz S J, Mandujano C C, Liu J, et al. Lipofilling of the breast does not increase the risk of recurrence of breast cancer: a matched controlled study[J]. Plastic and Reconstructive Surgery, 2016, 137(2): 385-393. DOI: 10.1097/01.prs.0000475741.32563.50http://dx.doi.org/10.1097/01.prs.0000475741.32563.50.
0
浏览量
17
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构