1.湖南省农业科学院 湖南省核农学与航天育种研究所/湖南省农业生物辐照工程技术研究中心 长沙 410125
2.湖南大学隆平分院 长沙 410125
陈亮,男,1981年9月出生,2007年于湖南农业大学农产品加工及贮藏工程专业获工学硕士学位,现从事核农学研究工作,副研究员,E-mail: chenliang912@163.com
王克勤,研究员,E-mail: wkq6412@163.com
扫 描 看 全 文
陈亮, 武小芬, 齐慧, 等. 电子束辐照对不同含水量芦苇木质纤维素结构及酶解性能的影响[J]. 辐射研究与辐射工艺学报, 2023,41(2):020401.
CHEN Liang, WU Xiaofen, QI Hui, et al. Effects of electron beam irradiation pretreatment on the structure and enzymatic efficiency of
陈亮, 武小芬, 齐慧, 等. 电子束辐照对不同含水量芦苇木质纤维素结构及酶解性能的影响[J]. 辐射研究与辐射工艺学报, 2023,41(2):020401. DOI: 10.11889/j.1000-3436.2022-0105.
CHEN Liang, WU Xiaofen, QI Hui, et al. Effects of electron beam irradiation pretreatment on the structure and enzymatic efficiency of
以不同含水量的芦苇木质纤维素(以下简称芦苇)为试验材料,采用5 MeV电子束辐照处理,研究了电子束辐照对不同含水量芦苇化学组分、超分子结构、粉碎粒径及酶解性能的影响。结果表明:不同含水量的芦苇经电子束辐照后均发生降解,超分子结构受到破坏,粉碎后小粒径颗粒显著增加,酶解转化率大幅度提高;当吸收剂量相同时,不同含水量芦苇的表观形貌、超分子结构及粉碎粒径分布没有明显区别,但酶解转化率与含水量呈负相关,含水量5%、10%和50%的芦苇经过500 kGy 电子束辐照后,纤维素酶解转化率分别22.24%、19.76%和18.57%,半纤维素酶解转化率分别为25.04%、23.84%和19.56%,经过1 000 kGy电子束辐照后,含水量5%、10%和50%的芦苇纤维素酶解转化率分别为54.09%、47.27%和49.24%,半纤维素酶解转化率分别62.30%、53.25%和47.83%;当吸收剂量为500 kGy时,含水量为5%的芦苇纤维素、半纤维素较含水量10%和50%芦苇降解严重,而当吸收剂量为1 000 kGy时,含水量为50%的芦苇纤维素、半纤维素则较含水量5%和10%的芦苇降解严重,并且较含水量5%和10%的芦苇,含水量为50%的芦苇纤维素、半纤维素更多地被降解为非糖类物质。
The study investigated the chemical composition, supramolecular structures, particle size distribution, and enzymatic efficiency of ,Phragmites australis, lignocelluloses (PALs) with different moisture contents and treatment with 5 MeV electron beam irradiation. After irradiation, regardless of the moisture content, all PAL samples were degraded, their supramolecular structures were damaged, and the proportion of small PAL particles and the PAL enzymatic conversion rate increased significantly. There was no obvious difference in the apparent morphology, chemical structure, or crushed particle size distribution of PAL samples with different moisture contents when the absorbed dose was the same, but the enzymatic efficiency was negatively correlated with moisture content. The cellulose enzymatic conversion rates of PAL samples with 5%, 10%, and 50% moisture content were 22.24%, 19.76%, and 18.57%, respectively, and the enzymatic conversion rates of hemicellulose were 25.04%, 23.84%, and 19.56%, respectively, after 500 kGy electron beam irradiation. Meanwhile, the cellulose enzymatic conversion rates of PAL with 5%, 10%, and 50% moisture content were 54.09%, 47.27%, and 49.24%, respectively, and the enzymatic conversion rates of hemicellulose were 62.30%, 53.25%, and 47.83%, respectively, after 1 000 kGy electron beam irradiation. When the absorbed dose was 500 kGy, PAL cellulose and hemicellulose samples with 5% moisture content were severely degraded compared to samples with 10% and 50%. Meanwhile, when the absorbed dose was 1 000 kGy, the PAL cellulose and hemicellulose samples with 50% moisture content were severely degraded compared to those with 5% and 10% moisture content. Moreover, more cellulose and hemicellulose with 50% moisture content in PAL were degraded to non-carbohydrate substances compared to those with 5% and 10% moisture content.
电子束辐照含水量芦苇木质纤维素结构酶解
Electron beamIrradiationMoisture contentPhragmites australisLignocellulosesStructureEnzymatic hydrolysis
Sawatdeenarunat C, Surendra K C, Takara D, et al. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities[J]. Bioresource Technology, 2015, 178: 178-186. DOI: 10.1016/j.biortech.2014. 09.103http://dx.doi.org/10.1016/j.biortech.2014.09.103.
Singh N, Singhania R R, Nigam P S, et al. Global status of lignocellulosic biorefinery: challenges and perspectives[J]. Bioresource Technology, 2022, 344: 126415. DOI: 10.1016/j.biortech.2021.126415http://dx.doi.org/10.1016/j.biortech.2021.126415.
Rajabi H, Hadi Mosleh M, Mandal P, et al. Emissions of volatile organic compounds from crude oil processing - Global emission inventory and environmental release[J]. Science of the Total Environment, 2020, 727: 138654. DOI: 10.1016/j.scitotenv.2020.138654http://dx.doi.org/10.1016/j.scitotenv.2020.138654.
Ebadian M, van Dyk S, McMillan J D, et al. Biofuels policies that have encouraged their production and use: an international perspective[J]. Energy Policy, 2020, 147: 111906. DOI: 10.1016/j.enpol.2020.111906http://dx.doi.org/10.1016/j.enpol.2020.111906.
Usmani Z, Sharma M, Awasthi A K, et al. Lignocellulosic biorefineries: the current state of challenges and strategies for efficient commercialization[J]. Renewable and Sustainable Energy Reviews, 2021, 148: 111258. DOI: 10.1016/j.rser.2021.111258http://dx.doi.org/10.1016/j.rser.2021.111258.
De Bhowmick G, Sarmah A K, Sen R. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products[J]. Bioresource Technology, 2018, 247: 1144-1154. DOI: 10.1016/j.biortech.2017.09.163http://dx.doi.org/10.1016/j.biortech.2017.09.163.
de Oliveira J, Porto de Souza Vandenberghe L, Zwiercheczewski de Oliveira P, et al. Bioconversion of potato-processing wastes into an industrially-important chemical lactic acid[J]. Bioresource Technology Reports, 2021, 15: 100698. DOI: 10.1016/j.biteb.2021.100698http://dx.doi.org/10.1016/j.biteb.2021.100698.
Patel A, Shah A R. Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products[J]. Journal of Bioresources and Bioproducts, 2021, 6(2): 108-128. DOI: 10.1016/j.jobab. 2021.02.001http://dx.doi.org/10.1016/j.jobab.2021.02.001.
Govil T, Wang J, Samanta D, et al. Lignocellulosic feedstock: a review of a sustainable platform for cleaner production of nature's plastics[J]. Journal of Cleaner Production, 2020, 270: 122521. DOI: 10.1016/j.jclepro. 2020.122521http://dx.doi.org/10.1016/j.jclepro.2020.122521.
蔡侠. 乙醇原料芦苇的生物质酶解糖化研究[D]. 北京: 中国农业科学院, 2011.
CAI Xia. Enzymatic saccharification of phragmites australis biomass in ethanol manufacturing[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011.
Wang Y Q, Lu J, Zhou S Y, et al. Bioconversion of cellulose and hemicellulose in reed sawdust to xylo-oligosaccharides and L-lactic acid[J]. Industrial Crops and Products, 2022, 187: 115390. DOI: 10.1016/j.indcrop.2022.115390http://dx.doi.org/10.1016/j.indcrop.2022.115390.
罗学卫, 刘静逸, 杨蕊, 等. 南洞庭湖南荻退出经营前后种群变化特征研究[J]. 湖南林业科技, 2020, 47(2): 53-57. DOI: 10.3969/j.issn.1003-5710.2020.02.009http://dx.doi.org/10.3969/j.issn.1003-5710.2020.02.009.
LUO Xuewei, LIU Jingyi, YANG Rui, et al. Characteristics of Triarrhena lutarioriparia population change of before and after the exit management in South Dongting Lake[J]. Hunan Forestry Science & Technology, 2020, 47(2): 53-57. DOI: 10.3969/j.issn. 1003-5710.2020.02.009http://dx.doi.org/10.3969/j.issn.1003-5710.2020.02.009.
Zhao X B, Zhang L H, Liu D H. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose[J]. Biofuels, Bioproducts and Biorefining, 2012, 6(4): 465-482. DOI: 10.1002/bbb.1331http://dx.doi.org/10.1002/bbb.1331.
Chen J P, Wang L Y, Su X J, et al. Structure, morphology, thermostability and irradiation-mediated degradation fractions of hemicellulose treated with γ-irradiation[J]. Waste and Biomass Valorization, 2016, 7(6): 1415-1425. DOI: 10.1007/s12649-016-9489-1http://dx.doi.org/10.1007/s12649-016-9489-1.
Su X J, Zhang C Y, Li W J, et al. Radiation-induced structural changes of miscanthus biomass[J]. Applied Sciences, 2020, 10(3): 1130. DOI: 10.3390/app10031130http://dx.doi.org/10.3390/app10031130.
Wu X F, Chen L, He W Q, et al. Characterize the physicochemical structure and enzymatic efficiency of agricultural residues exposed to γ-irradiation pretreatment[J]. Industrial Crops and Products, 2020, 150: 112228. DOI: 10.1016/j.indcrop.2020.112228http://dx.doi.org/10.1016/j.indcrop.2020.112228.
何源禄. 植物纤维原料辐射水解研究进展[J]. 核技术, 1984, 7(5): 7-10.
HE Yuanlu. Advances in studies on radiolytic hydrolysis of plant cellulosic materials[J]. Nuclear Techniques, 1984, 7(5): 7-10.
哈鸿飞, 吴季兰. 高分子辐射化学-原理与应用[M]. 第2版. 北京: 北京大学出版社, 2003: 75-106.
HA Hongfei, WU Jilan. Radiation chemistry of polymers-Principles and Applications[M]. 2nd ed. Beijing: Peking University Press, 2003: 75-106.
齐慧, 陈亮, 武小芬, 等. γ射线辐照及粒径对芦苇秸秆酶解发酵的影响[J/OL].辐射研究与辐射工艺学报. [2022-08-02](2022-10-13).https://kns.cnki.net/kcms/detail/31.1258.tl.20220801.1628.002.htmlhttps://kns.cnki.net/kcms/detail/31.1258.tl.20220801.1628.002.html. DOI: 10.11889/j.1000-3436.2022-0057http://dx.doi.org/10.11889/j.1000-3436.2022-0057.
QI Hui, CHEN Liang, WU Xiaofen, et al. Effects of γ-ray irradiation and particle size on enzymatic hydrolysis and fermentation of reed straws[J/OL]. Journal of Radiation Research and Radiation Processing. [2022-08-02](2022-10-13).https://kns.cnki.net/kcms/detail/31.1258.tl.20220801.1628.002.htmlhttps://kns.cnki.net/kcms/detail/31.1258.tl.20220801.1628.002.html. DOI: 10.11889/j.1000-3436.2022-0057http://dx.doi.org/10.11889/j.1000-3436.2022-0057.
Tang S X, Wang K Q, Cong Z S, et al. Changes in chemical composition and in vitro fermentation characters of rice straw due to gamma irradiation[J]. Journal of Food Agriculture and Environment, 2012, 10(2): 459-462.
Li Q M, Li X J, Jiang Y L, et al. Analysis of degradation products and structural characterization of giant reed and Chinese silvergrass pretreated by 60Co-γ irradiation[J]. Industrial Crops and Products, 2016, 83: 307-315. DOI: 10.1016/j.indcrop.2016.01.024http://dx.doi.org/10.1016/j.indcrop.2016.01.024.
Liu Y, Zhou H, Wang S H, et al. Comparison of γ-irradiation with other pretreatments followed with simultaneous saccharification and fermentation on bioconversion of microcrystalline cellulose for bioethanol production[J]. Bioresource Technology, 2015, 182: 289-295. DOI: 10.1016/j.biortech.2015.02.009http://dx.doi.org/10.1016/j.biortech.2015.02.009.
袁龙婷, 万金泉, 马邕文, 等. 不同干燥方式对纤维形态和超分子结构的影响研究[J]. 造纸科学与技术, 2013, 32(6): 1-5. DOI: 10.19696/j.issn1671-4571.2013.06.001http://dx.doi.org/10.19696/j.issn1671-4571.2013.06.001.
YUAN Longting, WAN Jinquan, MA Yongwen, et al. The effect of different drying method on the fiber morphology and supramolecular structures[J]. Paper Science & Technology, 2013, 32(6): 1-5. DOI: 10.19696/j.issn1671-4571.2013.06.001http://dx.doi.org/10.19696/j.issn1671-4571.2013.06.001.
Liu Y, Chen J P, Wu X F, et al. Insights into the effects of γ-irradiation on the microstructure, thermal stability and irradiation-derived degradation components of microcrystalline cellulose (MCC)[J]. RSC Advances, 2015, 5(43): 34353-34363. DOI: 10.1039/C5RA03300Dhttp://dx.doi.org/10.1039/C5RA03300D.
武小芬, 雷舒婷, 储奕, 等. 5 MeV电子加速器辐照对甲酸循环分离南荻木质纤维素的影响[J]. 辐射研究与辐射工艺学报, 2022, 40(2): 020402. DOI: 10.11889/j.1000-3436.2021-0210http://dx.doi.org/10.11889/j.1000-3436.2021-0210.
WU Xiaofen, LEI Shuting, CHU Yi, et al. Effects of 5-MeV electron accelerator irradiation on cycling separation of lignocellulose from Triarrhena lutarioriparia by formic acid[J]. Journal of Radiation Research and Radiation Processing, 2022, 40(2): 020402. DOI: 10.11889/j.1000-3436.2021-0210http://dx.doi.org/10.11889/j.1000-3436.2021-0210.
Marchessault R H, Liang C Y. The infrared spectra of crystalline polysaccharides. VIII. Xylans[J]. Journal of Polymer Science, 1962, 59(168): 357-378. DOI: 10.1002/pol.1962.1205916813http://dx.doi.org/10.1002/pol.1962.1205916813.
唐洪涛, 哈益明, 王锋. γ射线辐照玉米秸秆预处理对酶解产糖的影响[J]. 辐射研究与辐射工艺学报, 2011, 29(5): 307-313.
TANG Hongtao, HA Yiming , WANG Feng. Effect of γ-rays radiation pretreatment on enzymatic hydrolysis of corn straw for producing sugar[J]. Journal of Radiation Research and Radiation Processing, 2011, 29(5): 307-313.
Ji G Y, Han L J, Gao C F, et al. Quantitative approaches for illustrating correlations among the mechanical fragmentation scales, crystallinity and enzymatic hydrolysis glucose yield of rice straw[J]. Bioresource Technology, 2017, 241: 262-268. DOI: 10.1016/j.biortech.2017.05.062http://dx.doi.org/10.1016/j.biortech.2017.05.062.
Tissot C, Grdanovska S, Barkatt A, et al. On the mechanisms of the radiation-induced degradation of cellulosic substances[J]. Radiation Physics and Chemistry, 2013, 84: 185-190. DOI: 10.1016/j.radphyschem.2012.06.020http://dx.doi.org/10.1016/j.radphyschem.2012.06.020.
0
浏览量
14
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构