1.华东师范大学物理与电子科学学院 上海磁共振重点实验室 上海 200241
叶金怡,女,1997年1月出生,2019年6月毕业于浙江师范大学,现为华东师范大学在读硕士研究生,无线电物理专业
王向晖,博士,副教授,E-mail: xhwang@phy.ecnu.edu.cn
扫 描 看 全 文
叶金怡, 张杰, 齐红新, 等. SC双波源脉冲微波相互垂直复合辐照对大鼠重要组织器官生物效应的影响[J]. 辐射研究与辐射工艺学报, 2023,41(2):020301.
YE Jinyi, ZHANG Jie, QI Hongxin, et al. Effects of SC dual pulsed-microwaves irradiation on the bioeffects in rats' organs under a mutually perpendicular incidence[J]. Journal of Radiation Research and Radiation Processing, 2023,41(2):020301.
叶金怡, 张杰, 齐红新, 等. SC双波源脉冲微波相互垂直复合辐照对大鼠重要组织器官生物效应的影响[J]. 辐射研究与辐射工艺学报, 2023,41(2):020301. DOI: 10.11889/j.1000-3436.2022-0109.
YE Jinyi, ZHANG Jie, QI Hongxin, et al. Effects of SC dual pulsed-microwaves irradiation on the bioeffects in rats' organs under a mutually perpendicular incidence[J]. Journal of Radiation Research and Radiation Processing, 2023,41(2):020301. DOI: 10.11889/j.1000-3436.2022-0109.
本文研究了S和C波段双波源沿相互垂直方向同时辐照时,脉冲数对大鼠血液、脑、睾丸、心脏和肝脏组织的影响,并与相同电磁暴露水平条件下的单波源电磁暴露生物效应进行了比较。结果表明:当空间场强幅值为44.84 kV/m,脉冲数为2、5、20和200时,辐照组大鼠的血常规、血清睾酮、谷丙转氨酶(Alanine aminotransferase,ALT)和谷草转氨酶(Aspartate aminotransferase,AST)含量等指标与Control组及Sham组相比均未发生明显变化(,p,>,0.05)。辐照组大鼠的脑、睾丸、心脏和肝脏组织形态正常,细胞核面积统计结果及睾丸组织的Johnson评分结果与Control及Sham组相比均无明显差异(,p,>,0.05),没有发现明显的病理损伤。辐照组大鼠4个组织中的促凋亡蛋白Bax的含量均随脉冲数增加呈非线性增加趋势,具有脉冲微波辐照在非热效应下的场效应特征。当脉冲数大于2时,脑和睾丸组织出现了明显的凋亡响应(,p,˂0.05),而心脏和肝脏组织在脉冲数达到20时才出现明显的凋亡响应(,p,˂0.05),这主要是因为脑和睾丸的内场场强幅值(分别为11.3 kV/m和10 kV/m)高于心脏和肝脏组织的内场场强幅值(分别为5.73 kV/m和5.33 kV/m)。在电磁暴露水平基本相同的情况下,复合辐照与两波源单独辐照所产生的凋亡响应之间无显著性差异(,p,>,0.05)。
To investigate the potential risk of electromagnetic exposure, systematic studies on the bioeffects caused by single-frequency electromagnetic fields have been carried out with plenty of achievements.However, the bioeffects caused by multiple-frequency fields still need to be further studied. In the resent work, we constructed a dual-sourced irradiation system to allow two microwaves simultaneously incident from two perpendicular directions. Subsequently, the influence of the number of pulses on the blood, brain, testis, heart, and liver tissues of rats under the simultaneous irradiation of S-band and C-band pulsed microwaves was studied, and compared to that caused by the single-sourced exposure with the same electromagnetic exposure dose. The results showed that when the amplitude of the space electric field intensity was 44.84 kV/m and the number of the pulses was 2, 5, 20 and 200, the blood routine, testosterone, alanine aminotransferase and aspartate aminotransferase content of rats in the irradiation groups did not change significantly compared with the control group and sham group (,p,>,0.05). The nuclear area in the brain, heart and liver of rats, as well as the Johnson score of the testis, has not significantly changed after the irradiation (,p,>,0.05), and no pathological changes have been observed in these target tissues. The content of Bax in the above four tissues of rats in the irradiation groups increased nonlinearly with the increase of the number of pulses, which can be described as the non-thermal bioeffect that concerned the intensity of the electric field of the pulsed microwave. When the number of pulses is greater than 2, a significant apoptotic response was detected in the brain and testicle (,p,˂0.05), while in the liver and heart the pulse number needs to be greater than 20 (,p,˂0.05). This is mainly because the amplitude of the internal field of the brain and testicle (11.3 kV/m and 10 kV/m respectively) is higher than that of the liver and heart (5.73 kV/m and 5.33 kV/m respectively). Under the same electromagnetic exposure dose, there was no difference between the SC combined irradiation and the S or C individual-irradiation (,p,>,0.05).
双波源复合场电磁暴露生物效应比吸收能脉冲微波
Dual-wave combined fieldElectromagnetic exposureBiological effectSpecific absorption energyPulsed microwave
International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)[J]. Health Physics, 2020, 118(5): 483-524. DOI: 10.1097/HP. 0000000000001210http://dx.doi.org/10.1097/HP.0000000000001210.
IEEE International Committee on Electromagnetic Safety. IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz: IEEE-Std-C95 [S]. New York: The Institue of Electrical and Electronics Engineers, Inc, 2019. 10.1109/ACCESS.2019.2954823http://dx.doi.org/10.1109/ACCESS.2019.2954823
国家质量监督检验检疫总局, 环境保护部. 电磁环境控制限值: GB 8702—2014[S]. 北京: 中国环境科学出版社, 2015.
Radiation Monitoring Technical Center of Ministry of Ecology and Environment. Controlling limits for electromagnetic environment: GB 8702—2014[S]. Beijing: China Environmental Press, 2015.
吕朝辉, 张文鸾, 耿德军, 等. 复杂电磁环境下电磁辐射对大鼠肝脏的影响[J]. 实验动物与比较医学, 2018, 38(1): 40-43. DOI: 10.3969/j.issn.1674-5817.2018. 01.007http://dx.doi.org/10.3969/j.issn.1674-5817.2018.01.007.
LYU Zhaohui , ZHANG Wenluan, GENG Dejun, et al. Influence of electromagnetic radiation on rats liver under complex electromagnetic environment[J]. Laboratory Animal and Comparative Medicine, 2018, 38(1): 40-43. DOI: 10.3969/j.issn.1674-5817.2018.01.007http://dx.doi.org/10.3969/j.issn.1674-5817.2018.01.007.
徐茜, 靳宗达, 董亮, 等. 低剂量微波辐射减轻γ射线对小鼠造血系统的损伤[J]. 辐射研究与辐射工艺学报, 2009, 27(5): 289-296. 10.3969/j.issn.1000-3436.2009.05.007http://dx.doi.org/10.3969/j.issn.1000-3436.2009.05.007
XU Qian, JIN Zongda, DONG Liang, et al. The reduction of γ-rays damages of mice hematopoietic system pre-treated by low dose microwave irradiation[J]. Journal of Radiation Research and Radiation Processing, 2009, 27(5): 289-296. 10.3969/j.issn.1000-3436.2009.05.007http://dx.doi.org/10.3969/j.issn.1000-3436.2009.05.007
Jauchem J R, Ryan K L, Frei M R. Cardiovascular and thermal effects of microwave irradiation at 1 and/or 10 GHz in anesthetized rats[J]. Bioelectromagnetics, 2000, 21(3): 159-166. DOI: 10.1002/(sici)1521-186x(200004)21: 3159: aid-bem2>3.0.co;2-http://dx.doi.org/10.1002/(sici)1521-186x(200004)21:3159:aid-bem2>3.0.co;2-#.
López-Furelos A, del Mar Miñana-Maiques M, Leiro-Vidal J M, et al. An experimental multi-frequency system for studying dosimetry and acute effects on cell and nuclear morphology in rat tissues[J]. Progress in Electromagnetics Research, 2012, 129: 541-558. DOI: 10.2528/pier12042707http://dx.doi.org/10.2528/pier12042707.
Lee H J, Lee J S, Pack J K, et al. Lack of teratogenicity after combined exposure of pregnant mice to CDMA and WCDMA radiofrequency electromagnetic fields[J]. Radiation Research, 2009, 172(5): 648-652. DOI: 10. 1667/RR1771.1http://dx.doi.org/10.1667/RR1771.1.
Zhu R Q, Wang H, Xu X P, et al. Effects of 1.5 and 4.3 GHz microwave radiation on cognitive function and hippocampal tissue structure in Wistar rats[J]. Scientific Reports, 2021, 11: 10061. DOI: 10.1038/s41598-021-89348-4http://dx.doi.org/10.1038/s41598-021-89348-4.
李孟达. 大鼠复合场电磁暴露剂量的数值仿真[D]. 上海: 华东师范大学, 2020.
LI Mengda. Numerical simulation of electromagnetic exposure dose in compound field of rat[D]. Shanghai: East China Normal University, 2020.
葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 3版. 西安: 西安电子科技大学出版社, 2011.
GE Debiao, YAN Yubo. Finite difference time domain method for electromagnetic wave[M]. 3rd ed. Xian: Xidian University Press, 2011.
Federal Communications Commission. Body tissuedielectric parameters[EB/OL]. (2015-11-06) [2019-11-15]. https://www.fcc.gov/general/body-tissue-dielectric-parametershttps://www.fcc.gov/general/body-tissue-dielectric-parameters. 10.4135/9781452206905.n269http://dx.doi.org/10.4135/9781452206905.n269
Chen H L, Ge R S, Zirkin B R. Leydig cells: from stem cells to aging[J]. Molecular and Cellular Endocrinology, 2009, 306(1/2): 9-16. DOI: 10.1016/j.mce.2009.01.023http://dx.doi.org/10.1016/j.mce.2009.01.023.
Anderson F H, Zeng L C, Rock N R, et al. An assessment of the clinical utility of serum ALT and AST in chronic hepatitis C[J]. Hepatology Research, 2000, 18(1): 63-71. DOI: 10.1016/S1386-6346(99)00085-6http://dx.doi.org/10.1016/S1386-6346(99)00085-6.
Xie K L, Chen C H, Tsai S P, et al. Loss of life expectancy by 10 years or more from elevated aspartate aminotransferase: finding aspartate aminotransferase a better mortality predictor for all-cause and liver-related than alanine aminotransferase[J]. The American Journal of Gastroenterology, 2019, 114(9): 1478-1487. DOI: 10.14309/ajg.0000000000000332http://dx.doi.org/10.14309/ajg.0000000000000332.
孙强. 运动性肥大心脏心肌超微结构改变的实验研究[J]. 四川体育科学, 2013, 32(4): 33-36. DOI: 10.13932/j.cnki.sctykx.2013.04.003http://dx.doi.org/10.13932/j.cnki.sctykx.2013.04.003.
SUN Qiang. Experimental study on the ultrastructure change of cardiomyocyte in athletic heart[J]. Sichuan Sports Science, 2013, 32(4): 33-36. DOI: 10.13932/j.cnki.sctykx.2013.04.003http://dx.doi.org/10.13932/j.cnki.sctykx.2013.04.003.
Akdag M Z, Dasdag S, Canturk F, et al. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats?[J]. Journal of Chemical Neuroanatomy, 2016, 75: 116-122. DOI: 10.1016/j.jchemneu.2016.01.003http://dx.doi.org/10.1016/j.jchemneu.2016.01.003.
Jaffar F H F, Osman K, Ismail N H, et al. Adverse effects of Wi-Fi radiation on male reproductive system: a systematic review[J]. The Tohoku Journal of Experimental Medicine, 2019, 248(3): 169-179. DOI: 10. 1620/tjem.248.169http://dx.doi.org/10.1620/tjem.248.169.
Taflove A, Oskooi A, Johnson S G. Advances in FDTD computational electrodynamics: photonics and nanotechnology[M]. Boston: Artech House, 2013.
Wang X H, Qi H X, Zhang J, et al. Multivariable quantitative relation between cell viability and the exposure parameters of 9.33 GHz RF-EMP irradiation[J]. Electromagnetic Biology and Medicine, 2018, 37(3): 146-154. DOI: 10.1080/15368378.2018.1482221http://dx.doi.org/10.1080/15368378.2018.1482221.
邹勇, 王丽峰, 胡向军. 电磁辐射生物效应的量效关系研究进展[J]. 军事医学, 2012, 36(3): 234-237. DOI: 10.3969/j.issn.1674-9960.2012.03.018http://dx.doi.org/10.3969/j.issn.1674-9960.2012.03.018.
ZOU Yong, WANG Lifeng, HU Xiangjun. Dose-response relationship of electromagnetic radiation and its research progress[J]. Military Medical Sciences, 2012, 36(3): 234-237. DOI: 10.3969/j.issn.1674-9960.2012.03.018http://dx.doi.org/10.3969/j.issn.1674-9960.2012.03.018.
匡玉标. 脉冲微波辐照对大鼠海马影响的研究[D]. 上海: 华东师范大学, 2011.
KUANG Yubiao. The effects on rats’ hippocampus of pulses microwave irradiation[D]. Shanghai: East China Normal University, 2011.
程煜. 脉冲微波对乳鼠心肌细胞及大鼠心脏组织的影响[D]. 上海: 华东师范大学, 2012.
CHENG Yu. The effects of pulses microwave irradiation on newborn rats’ cardiomyocytes and rats’Cardiac tissues[D]. Shanghai: East China Normal University, 2012.
裴剑, 黄欣, 陈树德, 等. 高功率脉冲微波细胞生物效应中脉冲个数与效应的关系研究[J]. 辐射防护, 2012, 32(1): 1-7.
PEI Jian, HUANG Xin, CHEN Shude, et al. The relationship between pulse number and effect in cell biological effects induced by high power pulse microwave[J]. Radiation Protection, 2012, 32(1): 1-7.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构