1.南京医科大学附属常州第二人民医院放疗科 常州 213003
2.江苏省医学物理工程研究中心 常州 213003
3.南京医科大学医学物理研究中心 常州 213003
4.常州市医学物理重点实验室 常州 213003
曹楠楠,女,2000年3月出生,2022年于河北医科大学获得理学学士学位,目前为在读硕士研究生,研究方向为生物医学工程医学物理方向,E-mail: cnn15027922638@163.com
倪昕晔,研究员,博士生导师,E-mail: nxy@njmu.edu.cn
扫 描 看 全 文
曹楠楠, 倪昕晔. 肺癌立体定向放射治疗中的运动管理研究现状[J]. 辐射研究与辐射工艺学报, 2023,41(3):030301.
CAO Nannan, NI Xinye. Research on motion management in stereotactic body radiotherapy for lung cancer[J]. Journal of Radiation Research and Radiation Processing, 2023,41(3):030301.
曹楠楠, 倪昕晔. 肺癌立体定向放射治疗中的运动管理研究现状[J]. 辐射研究与辐射工艺学报, 2023,41(3):030301. DOI: 10.11889/j.1000-3436.2022-0118.
CAO Nannan, NI Xinye. Research on motion management in stereotactic body radiotherapy for lung cancer[J]. Journal of Radiation Research and Radiation Processing, 2023,41(3):030301. DOI: 10.11889/j.1000-3436.2022-0118.
立体定向放射治疗作为治疗临床上不适合手术或拒绝手术的早期非小细胞肺癌患者的首选方式,是一种分割次数较少、单次放疗剂量大的大分割放射治疗方法。因此,对靶区位置的精度及重复性具有较高要求。针对此,临床上采用影像引导技术、合适的固定装置以及呼吸运动管理技术等辅助治疗来减小呼吸运动造成的影响。本文总结了这几种技术的研究现状,并基于各技术存在的问题对未来的研究方向进行了展望。
Stereotactic body radiotherapy, a hypofractionated radiation therapy method with fewer fractions and a large single radiation dose, is the preferred method for treating patients with early-stage non-small cell lung cancer who are clinically unsuitable for or refuse surgery. Accuracy and repeatability requirements of the target position are, therefore, necessary. In view of this, adjuvant treatments such as image-guided and respiratory motion management technology and immobilization devices are used clinically to reduce the impact of respiratory motion. This paper summarizes the research status of these approaches and proposes future directions based on the problems existing in each technology.
非小细胞肺癌立体定向放射治疗影像引导放射治疗运动管理技术固定装置
Non-small cell lung cancerStereotactic body radiotherapyImage-guidedRespiratory motion managementImmobilization device
Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: a Cancer Journal for Clinicians, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660http://dx.doi.org/10.3322/caac.21660.
Thai A A, Solomon B J, Sequist L V, et al. Lung cancer[J]. Lancet, 2021, 398(10299): 535-554. DOI: 10.1016/s0140-6736(21)00312-3http://dx.doi.org/10.1016/s0140-6736(21)00312-3.
中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肿瘤学分会肺癌临床诊疗指南(2021版)[J]. 中华医学杂志, 2021, 101(23): 1725-1757. DOI: 10.3760/cma.j.cn112137-20210207-00377http://dx.doi.org/10.3760/cma.j.cn112137-20210207-00377.
China Society of Oncology of Chinese Medical Association, Chinese Medical Assoociation Publishing House. Guideline for diagnosis and treatment of lung cancer in China: 2021 ed.[J]. National Medical Journal of China, 2021, 101(23): 1725-1757. DOI: 10.3760/cma.j.cn112137-20210207-00377http://dx.doi.org/10.3760/cma.j.cn112137-20210207-00377.
Tandberg D J, Tong B C, Ackerson B G, et al. Surgery versus stereotactic body radiation therapy for stage I non-small cell lung cancer: a comprehensive review[J]. Cancer, 2018, 124(4): 667-678. DOI: 10.1002/cncr.31196http://dx.doi.org/10.1002/cncr.31196.
Chang J Y, Senan S, Paul M A, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials[J]. The Lancet Oncology, 2015, 16(6): 630-637. DOI: 10.1016/S1470-2045(15)70168-3http://dx.doi.org/10.1016/S1470-2045(15)70168-3.
Vergalasova I, Cai J. A modern review of the uncertainties in volumetric imaging of respiratory-induced target motion in lung radiotherapy[J]. Medical Physics, 2020, 47(10): e988-e1008. DOI: 10.1002/mp. 14312http://dx.doi.org/10.1002/mp.14312.
Werner R, Sentker T, Madesta F, et al. Intelligent 4D CT sequence scanning (i4DCT): first scanner prototype implementation and phantom measurements of automated breathing signal-guided 4D CT[J]. Medical Physics, 2020, 47(6): 2408-2412. DOI: 10.1002/mp.14106http://dx.doi.org/10.1002/mp.14106.
Morton N, Sykes J, Barber J, et al. Reducing 4D CT imaging artifacts at the source: first experimental results from the respiratory adaptive computed tomography (REACT) system[J]. Physics in Medicine and Biology, 2020, 65(7): 075012. DOI: 10.1088/1361-6560/ab7abehttp://dx.doi.org/10.1088/1361-6560/ab7abe.
Martin S, Brien R O, Hofmann C, et al. An in silico performance characterization of respiratory motion guided 4DCT for high-quality low-dose lung cancer imaging[J]. Physics in Medicine and Biology, 2018, 63(15): 155012. DOI: 10.1088/1361-6560/aacecahttp://dx.doi.org/10.1088/1361-6560/aaceca.
Fayad H, Gilles M, Pan T, et al. A 4D global respiratory motion model of the thorax based on CT images: a proof of concept[J]. Medical Physics, 2018, 45(7): 3043-3051. DOI: 10.1002/mp.12982http://dx.doi.org/10.1002/mp.12982.
包学志. 基于贝叶斯原理的4D-CT图像肝脏呼吸运动预测方法研究[D]. 深圳: 中国科学院深圳先进技术研究院, 2020.
BAO Xuezhi. Study on prediction method of liver respiratory motion based on Bayesian theory in 4D-CT images[D]. Shenzhen: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 2020.
Wang G, Zhu X W, Zhang F, et al. Applied research of a four-dimensional CT localization technique in radiotherapy and treatment planning for early lung cancer[J]. Translational Cancer Research, 2020, 9(11): 7227-7235. DOI: 10.21037/tcr-20-2800http://dx.doi.org/10.21037/tcr-20-2800.
Huang L, Park K, Boike T, et al. A study on the dosimetric accuracy of treatment planning for stereotactic body radiation therapy of lung cancer using average and maximum intensity projection images[J]. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 2010, 96(1): 48-54. DOI: 10.1016/j.radonc.2010.04.003http://dx.doi.org/10.1016/j.radonc.2010.04.003.
O'Connell D, Shaverdian N, Kishan A U, et al. Comparison of lung tumor motion measured using a model-based 4DCT technique and a commercial protocol[J]. Practical Radiation Oncology, 2018, 8(3): e175-e183. DOI: 10.1016/j.prro.2017.11.003http://dx.doi.org/10.1016/j.prro.2017.11.003.
严鹏伟, 朱焕锋, 刘雅恬, 等. 基于3D-CT和4D-CT的肺癌放射治疗靶区勾画方法的研究[J]. 肿瘤学杂志, 2020, 26(7): 591-595. DOI: 10.11735/j.issn.1671-170X. 2020.07.B005http://dx.doi.org/10.11735/j.issn.1671-170X.2020.07.B005.
YAN Pengwei, ZHU Huanfeng, LIU Yatian, et al. Study of internal tumor volume for radiation treatment of non-small cell lung cancer on 3D-CT and 4D-CT[J]. Journal of Chinese Oncology, 2020, 26(7): 591-595. DOI: 10. 11735/j.issn.1671-170X.2020.07.B005http://dx.doi.org/10.11735/j.issn.1671-170X.2020.07.B005.
Muirhead R, McNee S G, Featherstone C, et al. Use of maximum intensity projections (MIPs) for target outlining in 4DCT radiotherapy planning[J]. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 2008, 3(12): 1433-1438. DOI: 10.1097/JTO.0b013e31818e5db7http://dx.doi.org/10.1097/JTO.0b013e31818e5db7.
Karlsson K, Lax I, Lindbäck E, et al. Estimation of delivered dose to lung tumours considering setup uncertainties and breathing motion in a cohort of patients treated with stereotactic body radiation therapy[J]. Physica Medica: PM: an International Journal Devoted to the Applications of Physics to Medicine and Biology: Official Journal of the Italian Association of Biomedical Physics (AIFB), 2021, 88: 53-64. DOI: 10.1016/j.ejmp. 2021.06.015http://dx.doi.org/10.1016/j.ejmp.2021.06.015.
Jang S S, Park S Y, Cho E Y, et al. Influence of tumor characteristics on correction differences between cone-beam computed tomography-guided patient setup strategies in stereotactic body radiation therapy for lung cancer[J]. Thoracic Cancer, 2020, 11(2): 311-319. DOI: 10.1111/1759-7714.13261http://dx.doi.org/10.1111/1759-7714.13261.
Mo Y, Liu J, Li Q, et al. Four-dimensional cone-beam CT reconstruction based on motion-compensated robust principal component analysis[J]. Nan Fang Yi Ke Da Xue Xue Bao = Journal of Southern Medical University, 2021, 41(2): 243-249. DOI: 10.12122/j.issn.1673-4254.2021. 02.12http://dx.doi.org/10.12122/j.issn.1673-4254.2021.02.12.
柴林燕, 高莹, 张晓智, 等. 4D-CBCT在肺癌容积旋转调强计划精准治疗中的临床应用[J]. 中国CT和MRI杂志, 2022, 20(4): 65-68.
CHAI Linyan, GAO Ying, ZHANG Xiaozhi, et al. Clinical application of 4D-CBCT in precise treatment of lung cancer volumetric modulated arc therapy program[J]. Chinese Journal of CT and MRI, 2022, 20(4): 65-68.
Chen G Y, Zhao Y S, Huang Q, et al. 4D-AirNet: a temporally-resolved CBCT slice reconstruction method synergizing analytical and iterative method with deep learning[J]. Physics in Medicine and Biology, 2020, 65(17): 175020. DOI: 10.1088/1361-6560/ab9f60http://dx.doi.org/10.1088/1361-6560/ab9f60.
O'Brien R T, Dillon O, Lau B, et al. The first-in-human implementation of adaptive 4D cone beam CT for lung cancer radiotherapy: 4DCBCT in less time with less dose[J]. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 2021, 161: 29-34. DOI: 10.1016/j.radonc.2021.05.021http://dx.doi.org/10.1016/j.radonc.2021.05.021.
Jiang Z R, Chang Y S, Zhang Z Y, et al. Fast four-dimensional cone-beam computed tomography reconstruction using deformable convolutional networks[J]. Medical Physics, 2022, 49(10): 6461-6476. DOI: 10. 1002/mp.15806http://dx.doi.org/10.1002/mp.15806.
Huang X K, Zhang Y, Chen L Y, et al. U-net-based deformation vector field estimation for motion-compensated 4D-CBCT reconstruction[J]. Medical Physics, 2020, 47(7): 3000-3012. DOI: 10.1002/mp. 14150http://dx.doi.org/10.1002/mp.14150.
Usui K, Ogawa K, Goto M, et al. A cycle generative adversarial network for improving the quality of four-dimensional cone-beam computed tomography images[J]. Radiation Oncology (London, England), 2022, 17(1): 69. DOI: 10.1186/s13014-022-02042-1http://dx.doi.org/10.1186/s13014-022-02042-1.
Mo Y, Liu J, Li Q, et al. Joint motion estimation and compensation for four-dimensional cone-beam computed tomography image reconstruction[J]. IEEE Access, 2021, 9: 147559-147569. DOI: 10.1109/access.2021.3110861http://dx.doi.org/10.1109/access.2021.3110861.
Sun L S, Jiang Z R, Chang Y S, et al. Building a patient-specific model using transfer learning for four-dimensional cone beam computed tomography augmentation[J]. Quantitative Imaging in Medicine and Surgery, 2021, 11(2): 540-555. DOI: 10.21037/qims-20-655http://dx.doi.org/10.21037/qims-20-655.
张赛, 李春迎, 张恒, 等. 光学体表引导放射治疗研究现状[J]. 中国辐射卫生, 2022, 31(3): 362-366, 372. DOI: 10.13491/j.issn.1004-714X.2022.03.020http://dx.doi.org/10.13491/j.issn.1004-714X.2022.03.020.
ZHANG Sai, LI Chunying, ZHANG Heng, et al. Current research on surface guided radiation therapy[J]. Chinese Journal of Radiological Health, 2022, 31(3): 362-366, 372. DOI: 10.13491/j.issn.1004-714X.2022.03.020http://dx.doi.org/10.13491/j.issn.1004-714X.2022.03.020.
Heinzerling J H, Hampton C J, Robinson M, et al. Use of surface-guided radiation therapy in combination with IGRT for setup and intrafraction motion monitoring during stereotactic body radiation therapy treatments of the lung and abdomen[J]. Journal of Applied Clinical Medical Physics, 2020, 21(5): 48-55. DOI: 10.1002/acm2.12852http://dx.doi.org/10.1002/acm2.12852.
Sarudis S, Karlsson A, Bäck A. Surface guided frameless positioning for lung stereotactic body radiation therapy[J]. Journal of Applied Clinical Medical Physics, 2021, 22(9): 215-226. DOI: 10.1002/acm2.13370http://dx.doi.org/10.1002/acm2.13370.
徐庚, 郑佳俊, 赵建, 等. 光学体表监测系统(OSMS)在胸部肿瘤放疗摆位中的临床应用[J]. 肿瘤预防与治疗, 2020, 33(7): 601-606. DOI: 10.3969/j.issn.1674-0904. 2020.07.010http://dx.doi.org/10.3969/j.issn.1674-0904.2020.07.010.
XU Geng, ZHENG Jiajun, ZHAO Jian, et al. Clinical application of optical surface monitoring system in patient positioning in radiotherapy for thoracic tumors[J]. Journal of Cancer Control and Treatment, 2020, 33(7): 601-606. DOI: 10.3969/j.issn.1674-0904.2020.07.010http://dx.doi.org/10.3969/j.issn.1674-0904.2020.07.010.
Huang Y L, Dong Z K, Wu H, et al. Deep learning-based synthetization of real-time in-treatment 4D images using surface motion and pretreatment images: a proof-of-concept study[J]. Medical Physics, 2022, 49(11): 7016-7024. DOI: 10.1002/mp.15858http://dx.doi.org/10.1002/mp.15858.
Crockett C B, Samson P, Chuter R, et al. Initial clinical experience of MR-guided radiotherapy for non-small cell lung cancer[J]. Frontiers in Oncology, 2021, 11: 617681. DOI: 10.3389/fonc.2021.617681http://dx.doi.org/10.3389/fonc.2021.617681.
Finazzi T, Palacios M A, Spoelstra F O B, et al. Role of on-table plan adaptation in MR-guided ablative radiation therapy for central lung tumors[J]. International Journal of Radiation Oncology, Biology, Physics, 2019, 104(4): 933-941. DOI: 10.1016/j.ijrobp.2019.03.035http://dx.doi.org/10.1016/j.ijrobp.2019.03.035.
Padgett K R, Simpson G N, Llorente R, et al. Feasibility of adaptive MR-guided stereotactic body radiotherapy (SBRT) of lung tumors[J]. Cureus, 2018, 10(4): e2423. DOI: 10.7759/cureus.2423http://dx.doi.org/10.7759/cureus.2423.
Regnery S, Ristau J, Weykamp F, et al. Magnetic resonance guided adaptive stereotactic body radiotherapy for lung tumors in ultracentral location: the MAGELLAN trial (ARO 2021-3)[J]. Radiation Oncology (London, England), 2022, 17(1): 102. DOI: 10.1186/s13014-022-02070-xhttp://dx.doi.org/10.1186/s13014-022-02070-x.
Uijtewaal P, Borman P T S, Woodhead P L, et al. Dosimetric evaluation of MRI-guided multi-leaf collimator tracking and trailing for lung stereotactic body radiation therapy[J]. Medical Physics, 2021, 48(4): 1520-1532. DOI: 10.1002/mp.14772http://dx.doi.org/10.1002/mp.14772.
Zhang L, Yin F F, Li T, et al. Multi-contrast four-dimensional magnetic resonance imaging (MC-4D-MRI): development and initial evaluation in liver tumor patients[J]. Medical Physics, 2021, 48(12): 7984-7997. DOI: 10. 1002/mp.15314http://dx.doi.org/10.1002/mp.15314.
Finazzi T, van Sörnsen de Koste J R, Palacios M A, et al. Delivery of magnetic resonance-guided single-fraction stereotactic lung radiotherapy[J]. Physics and Imaging in Radiation Oncology, 2020, 14: 17-23. DOI: 10.1016/j.phro.2020.05.002http://dx.doi.org/10.1016/j.phro.2020.05.002.
Navarro-Martin A, Cacicedo J, Leaman O, et al. Comparative analysis of thermoplastic masks versus vacuum cushions in stereotactic body radiotherapy[J]. Radiation Oncology, 2015, 10(1): 176. DOI: 10.1186/s13014-015-0484-7http://dx.doi.org/10.1186/s13014-015-0484-7.
Chen H, Liu L X, Wang H, et al. Influence of clinical and tumor factors on interfraction setup errors with rotation correction for vacuum cushion in lung stereotactic body radiation therapy[J]. Frontiers in Oncology, 2021, 11: 734709. DOI: 10.3389/fonc.2021.734709http://dx.doi.org/10.3389/fonc.2021.734709.
付秀根, 袁响林, 肖志平, 等. BodyFIX系统体位固定装置联合全身真空盖膜在肝癌立体定向放射治疗中的应用[J]. 中国医学装备, 2020, 17(7): 37-40. DOI: 10.3969/J.ISSN.1672-8270.2020.07.009http://dx.doi.org/10.3969/J.ISSN.1672-8270.2020.07.009.
FU Xiugen, YUAN Xianglin, XIAO Zhiping, et al. Application of BodyFIX fixed device with whole body vacuum film in SBRT for liver cancer[J]. China Medical Equipment, 2020, 17(7): 37-40. DOI: 10.3969/J.ISSN. 1672-8270.2020.07.009http://dx.doi.org/10.3969/J.ISSN.1672-8270.2020.07.009.
Han K, Cheung P, Basran P S, et al. A comparison of two immobilization systems for stereotactic body radiation therapy of lung tumors[J]. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 2010, 95(1): 103-108. DOI: 10.1016/j.radonc.2010.01.025http://dx.doi.org/10.1016/j.radonc.2010.01.025.
Heinzerling J H, Anderson J F, Papiez L, et al. Four-dimensional computed tomography scan analysis of tumor and organ motion at varying levels of abdominal compression during stereotactic treatment of lung and liver[J]. International Journal of Radiation Oncology, Biology, Physics, 2008, 70(5): 1571-1578. DOI: 10.1016/j.ijrobp.2007.12.023http://dx.doi.org/10.1016/j.ijrobp.2007.12.023.
Bouilhol G, Ayadi M, Rit S, et al. Is abdominal compression useful in lung stereotactic body radiation therapy? A 4DCT and dosimetric lobe-dependent study[J]. Physica Medica: PM: an International Journal Devoted to the Applications of Physics to Medicine and Biology: Official Journal of the Italian Association of Biomedical Physics (AIFB), 2013, 29(4): 333-340. DOI: 10.1016/j.ejmp.2012.04.006http://dx.doi.org/10.1016/j.ejmp.2012.04.006.
Mampuya W A, Nakamura M, Matsuo Y, et al. Interfraction variation in lung tumor position with abdominal compression during stereotactic body radiotherapy[J]. Medical Physics, 2013, 40(9): 091718. DOI: 10.1118/1.4819940http://dx.doi.org/10.1118/1.4819940.
Naumann P, Batista V, Farnia B, et al. Feasibility of optical surface-guidance for position verification and monitoring of stereotactic body radiotherapy in deep-inspiration breath-hold[J]. Frontiers in Oncology, 2020, 10: 573279. DOI: 10.3389/fonc.2020.573279http://dx.doi.org/10.3389/fonc.2020.573279.
Fjellanger K, Rossi L, Heijmen B J M, et al. Patient selection, inter-fraction plan robustness and reduction of toxicity risk with deep inspiration breath hold in intensity-modulated radiotherapy of locally advanced non-small cell lung cancer[J]. Frontiers in Oncology, 2022, 12: 966134. DOI: 10.3389/fonc.2022.966134http://dx.doi.org/10.3389/fonc.2022.966134.
Mørkeset S T, Lervåg C, Lund J Å, et al. Clinical experience of volumetric-modulated flattening filter free stereotactic body radiation therapy of lesions in the lung with deep inspiration breath-hold[J]. Journal of Applied Clinical Medical Physics, 2022, 23(9): e13733. DOI: 10. 1002/acm2.13733http://dx.doi.org/10.1002/acm2.13733.
Panakis N, McNair H A, Christian J A, et al. Defining the margins in the radical radiotherapy of non-small cell lung cancer (NSCLC) with active breathing control (ABC) and the effect on physical lung parameters[J]. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 2008, 87(1): 65-73. DOI: 10.1016/j.radonc.2007.12.012http://dx.doi.org/10.1016/j.radonc.2007.12.012.
Kraus K M, Simonetto C, Kundrát P, et al. Potential morbidity reduction for lung stereotactic body radiation therapy using respiratory gating[J]. Cancers, 2021, 13(20): 5092. DOI: 10.3390/cancers13205092http://dx.doi.org/10.3390/cancers13205092.
应微, 张德康. 主动呼吸控制与自由呼吸配合bodyfix固定装置用于胸部肿瘤SBRT对比研究[J]. 中华放射肿瘤学杂志, 2021, 30(7): 717-720. DOI: 10.3760/cma.j.cn113030-20201212-00613http://dx.doi.org/10.3760/cma.j.cn113030-20201212-00613.
YING Wei, ZHANG Dekang. Preliminary comparative study of active breathing coordinator and free breathing combined with bodyfix fixation device in stereotactic radiotherapy of thoracic tumors[J]. Chinese Journal of Radiation Oncology, 2021, 30(7): 717-720. DOI: 10.3760/cma.j.cn113030-20201212-00613http://dx.doi.org/10.3760/cma.j.cn113030-20201212-00613.
李春迎, 陆正大, 谢凯, 等. 增强现实在医学领域中的应用现状研究[J]. 中国医疗设备, 2020, 35(9): 165-168. DOI: 10.3969/j.issn.1674-1633.2020.09.038http://dx.doi.org/10.3969/j.issn.1674-1633.2020.09.038.
LI Chunying, LU Zhengda, XIE Kai, et al. Research on the application of augmented reality in medical field[J]. China Medical Devices, 2020, 35(9): 165-168. DOI: 10.3969/j.issn.1674-1633.2020.09.038http://dx.doi.org/10.3969/j.issn.1674-1633.2020.09.038.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构