1.南京理工大学环境与生物工程学院 南京 210094
金长先,男,1998年10月出生,南京理工大学在读硕士研究生
邵大冬,博士,教授,E-mail: shaodadong@126.com
高乾宏,博士,讲师,E-mail: gaoqianhong@njust.edu.cn
扫 描 看 全 文
金长先, 邵大冬, 高乾宏. 磷酸酯功能化超高分子量聚乙烯纤维的制备及其铀吸附性能[J]. 辐射研究与辐射工艺学报, 2023,41(2):020202.
JIN Changxian, SHAO Dadong, GAO Qianhong. Phosphate-functionalized ultrahigh-molecular-weight polyethylene fiber: preparation and uranium adsorption performance[J]. Journal of Radiation Research and Radiation Processing, 2023,41(2):020202.
金长先, 邵大冬, 高乾宏. 磷酸酯功能化超高分子量聚乙烯纤维的制备及其铀吸附性能[J]. 辐射研究与辐射工艺学报, 2023,41(2):020202. DOI: 10.11889/j.1000-3436.2022-0126.
JIN Changxian, SHAO Dadong, GAO Qianhong. Phosphate-functionalized ultrahigh-molecular-weight polyethylene fiber: preparation and uranium adsorption performance[J]. Journal of Radiation Research and Radiation Processing, 2023,41(2):020202. DOI: 10.11889/j.1000-3436.2022-0126.
通过预辐射接枝技术将甲基丙烯酸缩水甘油酯(GMA)引入到超高分子量聚乙烯(UHMWPE)纤维表面,然后与(2-氨基乙基)膦酸二乙酯进行开环反应,从而制备出应用于含铀废液处理的磷酸酯功能化超高分子量聚乙烯(UHMWPE-,g,-DEPP)纤维。采用X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)、X射线光电子能谱(XPS)、热重分析仪(TGA)和扫描电镜(SEM)等对改性前后纤维表面的化学结构、组成、热稳定性以及微观形貌等性能进行表征分析。为了研究该纤维对含铀废液中微量铀的去除性能,重点考察了起始溶液pH、初始离子浓度、吸附时间和温度等因素的影响。实验结果表明:UHMWPE-,g,-DEPP在室温条件下8 h可达到吸附平衡;在25 ℃、pH=5.0、,m,/,V,=0.2 g/L的条件下吸附量达到最大(113.2 mg/g)。该吸附过程遵循准二级动力学模型和Langmuir等温吸附模型,且该纤维表现出良好的循环使用性能和吸附选择性能。
Glycidyl methacrylate (GMA) was grafted onto an ultrahigh-molecular-weight polyethylene (UHMWPE) fiber through pre-irradiation grafting, and further modified with diethyl (2-aminoethyl) phosphonate. A novel type of phosphate-functionalized fiber (UHMWPE-,g,-DEPP) was successfully prepared for the separation and recovery of trace uranium in radioactive wastewater. The chemical structure, surface functional groups, stability, micro morphology, and other physical and chemical properties of the fiber materials were analyzed by X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The principal factors affecting the U(VI) adsorption performance of the UHMWPE-,g,-DEPP fiber were investigated, including pH of the aqueous solution, contact time, temperature, and coexisting ions. The experimental results showed that UHMWPE-,g,-DEPP can achieve an adsorption equilibrium at room temperature within 8 h and the maximum adsorption capacity (113.2 mg/g) at 25 °C, pH = 5.0, and ,m,/,V, = 0.2 g/L. The adsorption kinetic pattern was in good agreement with the pseudo-second-order model, and the adsorption equilibrium follows the Langmuir isotherm model well. The phosphate-functionalized fiber showed good recycling and adsorption selectivity.
铀超高分子量聚乙烯(2-氨基乙基)膦酸二乙酯辐射接枝
UraniumUltra high molecular weight polyethyleneDiethyl (2-aminoethyl) phosphonateRadiation grafting
Zhao L, Wang S Y, Zhuang H H, et al. Facile synthesis of low-cost MnPO4 with hollow grape-like clusters for rapid removal uranium from wastewater[J]. Journal of Hazardous Materials, 2022, 434: 128894. DOI: 10.1016/j.jhazmat.2022.128894http://dx.doi.org/10.1016/j.jhazmat.2022.128894.
Abney C W, Mayes R T, Saito T, et al. Materials for the recovery of uranium from seawater[J]. Chemical Reviews, 2017, 117(23): 13935-14013. DOI: 10.1021/acs.chemrev.7b00355http://dx.doi.org/10.1021/acs.chemrev.7b00355.
Ahmad M, Chen J J, Yang K, et al. Preparation of amidoxime modified porous organic polymer flowers for selective uranium recovery from seawater[J]. Chemical Engineering Journal, 2021, 418: 129370. DOI: 10.1016/j.cej.2021.129370http://dx.doi.org/10.1016/j.cej.2021.129370.
Xuan K, Wang J, Gong Z H, et al. Hydroxyapatite modified ZIF-67 composite with abundant binding groups for the highly efficient and selective elimination of uranium (VI) from wastewater[J]. Journal of Hazardous Materials, 2022, 426: 127834. DOI: 10.1016/j.jhazmat.2021.127834http://dx.doi.org/10.1016/j.jhazmat.2021.127834.
Bai Z Q, Yuan L Y, Zhu L, et al. Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption[J]. Journal of Materials Chemistry A, 2015, 3(2): 525-534. DOI: 10.1039/C4TA04878Dhttp://dx.doi.org/10.1039/C4TA04878D.
El-Maghrabi H H, Younes A A, Salem A R, et al. Magnetically modified hydroxyapatite nanoparticles for the removal of uranium(VI): preparation, characterization and adsorption optimization[J]. Journal of Hazardous Materials, 2019, 378: 120703. DOI: 10. 1016/j.jhazmat.2019.05.096http://dx.doi.org/10.1016/j.jhazmat.2019.05.096.
敖浚轩, 徐晓, 李玉娜, 等. 海水提铀研究进展[J]. 辐射研究与辐射工艺学报, 2019, 37(2): 020101. DOI: 10.11889/j.1000-3436.2019.rrj.37.020101http://dx.doi.org/10.11889/j.1000-3436.2019.rrj.37.020101.
AO Junxuan, XU Xiao, LI Yuna, et al. Research progress in uranium extraction from seawater[J]. Journal of Radiation Research and Radiation Processing, 2019, 37(2): 020101. DOI: 10.11889/j.1000-3436.2019.rrj.37. 020101http://dx.doi.org/10.11889/j.1000-3436.2019.rrj.37.020101.
Liao J, Xiong T, Zhao Z B, et al. Synthesis of a novel environmental-friendly biocarbon composite and its highly efficient removal of uranium(VI) and thorium(IV) from aqueous solution[J]. Journal of Cleaner Production, 2022, 374: 134059. DOI: 10.1016/j.jclepro.2022.134059http://dx.doi.org/10.1016/j.jclepro.2022.134059.
Abbasizadeh S, Keshtkar A R, Ali Mousavian M. Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium(VI) and thorium(IV) removal from aqueous solution[J]. Chemical Engineering Journal, 2013, 220: 161-171. DOI: 10.1016/j.cej.2013. 01.029http://dx.doi.org/10.1016/j.cej.2013.01.029.
Li R, Li Y N, Zhang M J, et al. Phosphate-based ultrahigh molecular weight polyethylene fibers for efficient removal of uranium from carbonate solution containing fluoride ions[J]. Molecules (Basel, Switzerland), 2018, 23(6): 1245. DOI: 10.3390/molecules23061245http://dx.doi.org/10.3390/molecules23061245.
Li X, Liu Z R, Huang M. Purification of uranium-containing wastewater by adsorption: a review of research on resin materials[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(7): 3043-3075. DOI: 10.1007/s10967-022-08370-6http://dx.doi.org/10.1007/s10967-022-08370-6.
Wang H, Zheng B H, Xu T H, et al. Macroporous hydrogel membrane by cooperative reaming for highly efficient uranium extraction from seawater[J]. Separation and Purification Technology, 2022, 289: 120823. DOI: 10.1016/j.seppur.2022.120823http://dx.doi.org/10.1016/j.seppur.2022.120823.
Chu J, Huang Q G, Dong Y H, et al. Enrichment of uranium in seawater by glycine cross-linked graphene oxide membrane[J]. Chemical Engineering Journal, 2022, 444: 136602. DOI: 10.1016/j.cej.2022.136602http://dx.doi.org/10.1016/j.cej.2022.136602.
Hua Y L, Wang W, Hu N, et al. Enrichment of uranium from wastewater with nanoscale zero-valent iron (nZVI)[J]. Environmental Science: Nano, 2021, 8(3): 666-674. DOI: 10.1039/D0EN01029Dhttp://dx.doi.org/10.1039/D0EN01029D.
Manos M J, Kanatzidis M G. Layered metal sulfides capture uranium from seawater[J]. Journal of the American Chemical Society, 2012, 134(39): 16441-16446. DOI: 10.1021/ja308028nhttp://dx.doi.org/10.1021/ja308028n.
Wang Z, Xu C, Lu Y X, et al. Visualization of adsorption: luminescent mesoporous silica-carbon dots composite for rapid and selective removal of U(VI) and in situ monitoring the adsorption behavior[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7392-7398. DOI: 10. 1021/acsami.6b13427http://dx.doi.org/10.1021/acsami.6b13427.
Bi C L, Zhang C H, Ma F Q, et al. Growth of a mesoporous Zr-MOF on functionalized graphene oxide as an efficient adsorbent for recovering uranium(VI) from wastewater[J]. Microporous and Mesoporous Materials, 2021, 323: 111223. DOI: 10.1016/j.micromeso.2021. 111223http://dx.doi.org/10.1016/j.micromeso.2021.111223.
Bhalara P D, Punetha D, Balasubramanian K. A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment[J]. Journal of Environmental Chemical Engineering, 2014, 2(3): 1621-1634. DOI: 10.1016/j.jece.2014.06.007http://dx.doi.org/10.1016/j.jece.2014.06.007.
冯健, 何桂强, 魏艳霞, 等. 海水提铀吸附材料研究进展[J]. 化工新型材料, 2022, 50(3): 1-7. DOI: 10.19817/j.cnki.issn1006-3536.2022.03.001http://dx.doi.org/10.19817/j.cnki.issn1006-3536.2022.03.001.
FENG Jian, HE Guiqiang, WEI Yanxia, et al. Research progress on adsorption material for U extraction from seawater[J]. New Chemical Materials, 2022, 50(3): 1-7. DOI: 10.19817/j.cnki.issn1006-3536.2022.03.001http://dx.doi.org/10.19817/j.cnki.issn1006-3536.2022.03.001.
Candadai A A, Weibel J A, Marconnet A M. Thermal conductivity of ultrahigh molecular weight polyethylene: from fibers to fabrics[J]. ACS Applied Polymer Materials, 2020, 2(2): 437-447. DOI: 10.1021/acsapm.9b00900http://dx.doi.org/10.1021/acsapm.9b00900.
冯鑫鑫, 邱龙, 张明星, 等. 偕胺肟基超高分子量聚乙烯纤维对含氟含铀溶液中铀的吸附性能研究[J]. 核技术, 2020, 43(2): 020301. DOI: 10.11889/j.0253-3219.2020.hjs.43.020301http://dx.doi.org/10.11889/j.0253-3219.2020.hjs.43.020301.
FENG Xinxin, QIU Long, ZHANG Mingxing, et al. Preparation of amidoxime-based ultra-high molecular weight polyethylene fiber for removing uranium from fluorine-containing wastewater[J]. Nuclear Techniques, 2020, 43(2): 020301. DOI: 10.11889/j.0253-3219.2020.hjs.43.020301http://dx.doi.org/10.11889/j.0253-3219.2020.hjs.43.020301.
Xie C Y, Jing S P, Wang Y, et al. Adsorption of uranium (VI) onto amidoxime-functionalized ultra-high molecular weight polyethylene fibers from aqueous solution[J]. Nuclear Science and Techniques, 2017, 28(7): 1-8. DOI: 10.1007/s41365-017-0251-6http://dx.doi.org/10.1007/s41365-017-0251-6.
Patel K, Chikkali S H, Sivaram S. Ultrahigh molecular weight polyethylene: Catalysis, structure, properties, processing and applications[J]. Progress in Polymer Science, 2020, 109: 101290. DOI: 10.1016/j.progpolymsci.2020.101290http://dx.doi.org/10.1016/j.progpolymsci.2020.101290.
Yu R, Lu Y R, Zhang X S, et al. Amidoxime-modified ultrathin polyethylene fibrous membrane for uranium extraction from seawater[J]. Desalination, 2022, 539: 115965. DOI: 10.1016/j.desal.2022.115965http://dx.doi.org/10.1016/j.desal.2022.115965.
Di T, Tan D G, Yu Q, et al. Ultra-high performance of hyper-crosslinked phosphate-based polymer for uranium and rare earth element adsorption in aqueous solution[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2019, 35(43): 13860-13871. DOI: 10.1021/acs.langmuir. 9b02459http://dx.doi.org/10.1021/acs.langmuir.9b02459.
Dutta R K, Shaida M A, Singla K, et al. Highly efficient adsorptive removal of uranyl ions by a novel graphene oxide reduced by adenosine 5'-monophosphate (RGO-AMP)[J]. Journal of Materials Chemistry A, 2019, 7(2): 664-678. DOI: 10.1039/C8TA09746Ahttp://dx.doi.org/10.1039/C8TA09746A.
Li L, Ma R, Wen T, et al. Functionalization of carbon nanomaterials by means of phytic acid for uranium enrichment[J]. Science of the Total Environment, 2019, 694: 133697. DOI: 10.1016/j.scitotenv.2019.133697http://dx.doi.org/10.1016/j.scitotenv.2019.133697.
Xu X, Ding X J, Ao J X, et al. Preparation of amidoxime-based PE/PP fibers for extraction of uranium from aqueous solution[J].Nuclear Science and Techniques, 2019, 30(2): 1-13. DOI: 10.1007/s41365-019-0543-0http://dx.doi.org/10.1007/s41365-019-0543-0.
Wei Y Q, Zhang L X, Shen L, et al. Positively charged phosphonate-functionalized mesoporous silica for efficient uranium sorption from aqueous solution[J]. Journal of Molecular Liquids, 2016, 221: 1231-1236. DOI: 10.1016/j.molliq.2015.04.056http://dx.doi.org/10.1016/j.molliq.2015.04.056.
Graillot A, Monge S, Faur C, et al. Synthesis by RAFT of innovative well-defined (co)polymers from a novel phosphorus-based acrylamide monomer[J]. Polymer Chemistry, 2013, 4(3): 795-803. DOI: 10.1039/C2PY20720Fhttp://dx.doi.org/10.1039/C2PY20720F.
Gao Q H, Hua J T, Li R, et al. Radiation-induced graft polymerization for the preparation of a highly efficient UHMWPE fibrous adsorbent for Cr(VI) removal[J]. Radiation Physics and Chemistry, 2017, 130: 92-102. DOI: 10.1016/j.radphyschem.2016.08.004http://dx.doi.org/10.1016/j.radphyschem.2016.08.004.
邱龙, 冯鑫鑫, 张明星, 等. 偕胺肟基聚乙烯无纺布的制备及其铀吸附性能[J]. 辐射研究与辐射工艺学报, 2021, 39(2): 020201. DOI: 10.11889/j.1000-3436.2021.rrj.39.020201http://dx.doi.org/10.11889/j.1000-3436.2021.rrj.39.020201.
QIU Long, FENG Xinxin, ZHANG Mingxing, et al. Preparation of amidoximated polyethylene nonwoven fabric and its uranium adsorption performance[J]. Journal of Radiation Research and Radiation Processing, 2021, 39(2): 020201. DOI: 10.11889/j.1000-3436.2021.rrj.39. 020201http://dx.doi.org/10.11889/j.1000-3436.2021.rrj.39.020201.
Rajaei A, Ghani K, Jafari M. Modification of UiO-66 for removal of uranyl ion from aqueous solution by immobilization of tributyl phosphate[J]. Journal of Chemical Sciences, 2021, 133(1): 14. DOI: 10.1007/s12039-020-01864-4http://dx.doi.org/10.1007/s12039-020-01864-4.
Wang C, Xiao F Z, Pu Y Q, et al. Preparation of p-carboxyphenyl azo calix[4]arene phosphate derivative and its extraction properties toward uranium(VI)[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317(3): 1235-1241. DOI: 10.1007/s10967-018-6000-4http://dx.doi.org/10.1007/s10967-018-6000-4.
Liao Y, Wang M, Chen D J. Electrosorption of uranium(VI) by highly porous phosphate-functionalized graphene hydrogel[J]. Applied Surface Science, 2019, 484: 83-96. DOI: 10.1016/j.apsusc.2019.04.103http://dx.doi.org/10.1016/j.apsusc.2019.04.103.
Liu W J, Wang Q L, Wang H Q, et al. Adsorption of uranium by chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand[J]. Chemosphere, 2022, 287: 132193. DOI: 10.1016/j.chemosphere.2021. 132193http://dx.doi.org/10.1016/j.chemosphere.2021.132193.
Singh G, Nayal A, Malhotra S, et al. Dual functionalized chitosan based composite hydrogel for haemostatic efficacy and adhesive property[J]. Carbohydrate Polymers, 2020, 247: 116757. DOI: 10.1016/j.carbpol. 2020.116757http://dx.doi.org/10.1016/j.carbpol.2020.116757.
Shao D D, Li Y Y, Wang X L, et al. Phosphate-functionalized polyethylene with high adsorption of uranium(VI)[J]. ACS Omega, 2017, 2(7): 3267-3275. DOI: 10.1021/acsomega.7b00375http://dx.doi.org/10.1021/acsomega.7b00375.
Alamo R G, Jeon K, Smith R L, et al. Crystallization of polyethylenes containing chlorines: precise vs random placement[J]. Macromolecules, 2008, 41(19): 7141-7151. DOI: 10.1021/ma801152phttp://dx.doi.org/10.1021/ma801152p.
Boubekeur B, Belhaneche-Bensemra N, Massardier V. Low-density polyethylene/poly(lactic acid) blends reinforced by waste wood flour[J]. Journal of Vinyl and Additive Technology, 2020, 26(4): 443-451. DOI: 10. 1002/vnl.21759http://dx.doi.org/10.1002/vnl.21759.
Özmen F, Korpayev S, Kavaklı P A, et al. Activation of inert polyethylene/polypropylene nonwoven fiber (NWF) by plasma-initiated grafting and amine functionalization of the grafts for Cu(II), Co(II), Cr(III), Cd(II) and Pb(II) removal[J]. Reactive and Functional Polymers, 2022, 174: 105234. DOI: 10.1016/j.reactfunctpolym.2022. 105234http://dx.doi.org/10.1016/j.reactfunctpolym.2022.105234.
Siow K S, Britcher L, Kumar S, et al. Deposition and XPS and FTIR analysis of plasma polymer coatings containing phosphorus[J]. Plasma Processes and Polymers, 2014, 11(2): 133-141. DOI: 10.1002/ppap. 201300115http://dx.doi.org/10.1002/ppap.201300115.
Chen S P, Hong J X, Yang H X, et al. Adsorption of uranium(VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite[J]. Journal of Environmental Radioactivity, 2013, 126: 253-258. DOI: 10.1016/j.jenvrad.2013.09.002http://dx.doi.org/10.1016/j.jenvrad.2013.09.002.
Yuan L Y, Liu Y L, Shi W Q, et al. High performance of phosphonate-functionalized mesoporous silica for U(VI) sorption from aqueous solution[J]. Dalton Transactions, 2011, 40(28): 7446-7453. DOI: 10.1039/c1dt10085hhttp://dx.doi.org/10.1039/c1dt10085h.
Liu J M, Yin X H, Liu T. Amidoxime-functionalized metal-organic frameworks UiO-66 for U(VI) adsorption from aqueous solution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95: 416-423. DOI: 10.1016/j.jtice.2018.08.012http://dx.doi.org/10.1016/j.jtice.2018.08.012.
Gao Q H, Wang M L, Zhao J C, et al. Fabrication of amidoxime-appended UiO-66 for the efficient and rapid removal of U(VI) from aqueous solution[J]. Microporous and Mesoporous Materials, 2022, 329: 111511. DOI: 10. 1016/j.micromeso.2021.111511http://dx.doi.org/10.1016/j.micromeso.2021.111511.
De Decker J, Rochette J, De Clercq J, et al. Carbamoylmethylphosphine oxide-functionalized MIL-101(Cr) as highly selective uranium adsorbent[J]. Analytical Chemistry, 2017, 89(11): 5678-5682. DOI: 10.1021/acs.analchem.7b00821http://dx.doi.org/10.1021/acs.analchem.7b00821.
0
浏览量
12
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构