1.中国科学院上海应用物理研究所 上海 201800
2.中国科学院大学 北京 100049
3.上海长沪新材料有限公司 上海 201800
4.中科武威新能源研究所 武威 733000
汪文睿,男,1996年3月出生,2014年于海南大学获学士学位,现为中国科学院上海应用物理研究所在读博士研究生,无机化学专业
李林繁,研究员,E-mail: lilinfan@sinap.ac.cn
扫 描 看 全 文
汪文睿, 刘崎, 何伟荣, 等. 辐射法制备聚乙烯醇(PVA)改性的聚对苯二甲酸乙二醇酯(PET)薄膜及其防雾性能[J]. 辐射研究与辐射工艺学报, 2023,41(4):040203.
WANG Wenrui, LIU Qi, HE Weirong, et al. Radiation preparation of polyvinyl alcohol (PVA)-modified polyethylene glycol terephthalate (PET) films and their anti-fogging properties[J]. Journal of Radiation Research and Radiation Processing, 2023,41(4):040203.
汪文睿, 刘崎, 何伟荣, 等. 辐射法制备聚乙烯醇(PVA)改性的聚对苯二甲酸乙二醇酯(PET)薄膜及其防雾性能[J]. 辐射研究与辐射工艺学报, 2023,41(4):040203. DOI: 10.11889/j.1000-3436.2022-0127.
WANG Wenrui, LIU Qi, HE Weirong, et al. Radiation preparation of polyvinyl alcohol (PVA)-modified polyethylene glycol terephthalate (PET) films and their anti-fogging properties[J]. Journal of Radiation Research and Radiation Processing, 2023,41(4):040203. DOI: 10.11889/j.1000-3436.2022-0127.
利用γ射线辐射交联制备聚乙烯醇(PVA)改性的聚对苯二甲酸乙二醇酯(PET)薄膜,PVA分子在γ射线辐照后形成交联网络并负载在PET薄膜表面。傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)对样品的分析,证明了PVA成功地固定在PET表面。透光率测试表明,改性薄膜保持了良好的光学性能,透光率为89%。高温高湿和低温冷冻测试表明,样品在两种极端条件下能均保持良好的防雾性能。饱和吸水性测试表明,改性PET薄膜防雾化性能来源于PVA交联网络的吸水性,负载率12.43%的PET薄膜饱和吸水率达到50%。
In this study, polyvinyl alcohol (PVA)-modified polyethylene glycol terephthalate (PET) films were prepared using γ-radiation crosslinking. The PVA molecules formed a crosslinking network after γ-irradiation and were loaded onto the surfaces of the PET films. The samples were analyzed by Fourier-transform infrared spectroscopy and scanning electron microscopy to demonstrate that the PVA was successfully anchored to the PET film surfaces. Light transmission tests revealed that the modified films maintained good optical properties with a light transmission of 89%. Whether under high-temperature, high-humidity, or low-temperature freezing conditions, the tests revealed that the samples exhibited good anti-fogging performance. Saturated water absorption tests revealed that the anti-fogging properties of the modified PET films were derived from the water absorption of the PVA crosslinking network, where the PET film under 12.43% loading showed a saturated water absorption of 50%.
辐射交联聚乙烯醇防雾化聚对苯二甲酸乙二醇酯
Radiation crosslinkingPolyvinyl alcoholAnti-foggingPolyethylene glycol terephthalate (PET)
冯树铭. PET薄膜的性能及其改性[J]. 聚酯工业, 2009, 22(1): 15-18. DOI: 10.3969/j.issn.1008-8261.2009. 01.004http://dx.doi.org/10.3969/j.issn.1008-8261.2009.01.004.
FENG Shuming. Performance and modification of PET film[J]. Polyester Industry, 2009, 22(1): 15-18. DOI: 10. 3969/j.issn.1008-8261.2009.01.004http://dx.doi.org/10.3969/j.issn.1008-8261.2009.01.004.
Franco P, Incarnato L, De Marco I. Supercritical CO2 impregnation of α-tocopherol into PET/PP films for active packaging applications[J]. Journal of CO2 Utilization, 2019, 34: 266-273. DOI: 10.1016/j.jcou. 2019.06.012http://dx.doi.org/10.1016/j.jcou.2019.06.012.
Oh C S, Lee S M, Kim E H, et al. Electro-optical properties of index matched ITO-PET film for touch panel application[J]. Molecular Crystals and Liquid Crystals, 2012, 568(1): 32-37. DOI: 10.1080/15421406. 2012.708842http://dx.doi.org/10.1080/15421406.2012.708842.
Pandiyaraj K N, Deshmukh R R, Mahendiran R, et al. Influence of operating parameters on surface properties of RF glow discharge oxygen plasma treated TiO₂/PET film for biomedical application[J]. Materials Science & Engineering C, Materials for Biological Applications, 2014, 36: 309-319. DOI: 10.1016/j.msec.2013.12.018http://dx.doi.org/10.1016/j.msec.2013.12.018.
Pon Kumar R, Wadgaonkar K, Mehta L, et al. Enhancement of mechanical and barrier properties of LLDPE composite film via PET fiber incorporation for agricultural application[J]. Polymers for Advanced Technologies, 2019, 30(5): 1251-1258. DOI: 10.1002/pat. 4558http://dx.doi.org/10.1002/pat.4558.
Beysens D. The formation of dew[J]. Atmospheric Research, 1995, 39(1/2/3): 215-237. DOI: 10.1016/0169-8095(95)00015-Jhttp://dx.doi.org/10.1016/0169-8095(95)00015-J.
Agam N, Berliner P R. Dew formation and water vapor adsorption in semi-arid environments—a review[J]. Journal of Arid Environments, 2006, 65(4): 572-590. DOI: 10.1016/j.jaridenv.2005.09.004http://dx.doi.org/10.1016/j.jaridenv.2005.09.004.
Pieters J G, Deltour J M, Debruyckere M J. Light transmission through condensation on glass and polyethylene[J]. Agricultural and Forest Meteorology, 1997, 85(1/2): 51-62. DOI: 10.1016/s0168-1923(96)02393-3http://dx.doi.org/10.1016/s0168-1923(96)02393-3.
Briscoe B J, Galvin K P. The effect of surface fog on the transmittance of light[J]. Solar Energy, 1991, 46(4): 191-197. 10.1016/0038-092x(91)90063-3http://dx.doi.org/10.1016/0038-092x(91)90063-3
Oguri K, Iwataka N, Tonegawa A, et al. Misting-free diamond surface created by sheet electron beam irradiation[J]. Journal of Materials Research, 2001, 16(2): 553-557. DOI: 10.1557/JMR.2001.0079http://dx.doi.org/10.1557/JMR.2001.0079.
San-Juan M, Martín Ó, Mirones B J, et al. Assessment of efficiency of windscreen demisting systems in electrical vehicles by using IR thermography[J]. Applied Thermal Engineering, 2016, 104: 479-485. DOI: 10.1016/J.APPLTHERMALENG.2016.05.093http://dx.doi.org/10.1016/J.APPLTHERMALENG.2016.05.093.
Bessell J R, Flemming E, Kunert W, et al. Maintenance of clear vision during laparoscopic surgery[J]. Minimally Invasive Therapy & Allied Technologies, 2009, 5(5): 450-455. DOI: 10.3109/13645709609153708http://dx.doi.org/10.3109/13645709609153708.
Park J T, Kim J H, Lee D. Excellent anti-fogging dye-sensitized solar cells based on superhydrophilic nanoparticle coatings[J]. Nanoscale, 2014, 6(13): 7362-7368. DOI: 10.1039/c4nr00919chttp://dx.doi.org/10.1039/c4nr00919c.
Durán I R, Laroche G. Water drop-surface interactions as the basis for the design of anti-fogging surfaces: theory, practice, and applications trends[J]. Advances in Colloid and Interface Science, 2019, 263: 68-94. DOI: 10.1016/j.cis.2018.11.005http://dx.doi.org/10.1016/j.cis.2018.11.005.
姚程健, 邹尾容, 范追追, 等. UV聚合制备PSBMA超亲水涂层及其防雾、自清洁性能表征[J]. 产业用纺织品, 2021, 39(8): 44-53. DOI: 10.3969/j.issn.1004-7093. 2021.08.008http://dx.doi.org/10.3969/j.issn.1004-7093.2021.08.008.
YAO Chengjian, ZOU Weirong, FAN Zhuizhui, et al. Preparation of PSBMA super-hydrophilic coating by UV polymerization and characterization of its anti-fog and self-cleaning performance[J]. Technical Textiles, 2021, 39(8): 44-53. DOI: 10.3969/j.issn.1004-7093.2021.08.008http://dx.doi.org/10.3969/j.issn.1004-7093.2021.08.008.
王崧合. 超亲水表面的构筑及应用进展[J]. 石油化工, 2022, 51(4): 492-497. DOI: 10.3969/j.issn.1000-8144. 2022.04.017http://dx.doi.org/10.3969/j.issn.1000-8144.2022.04.017.
WANG Songhe. Progress in preparation and application of superhydrophilic surfaces[J]. Petrochemical Technology, 2022, 51(4): 492-497. DOI: 10.3969/j.issn. 1000-8144.2022.04.017http://dx.doi.org/10.3969/j.issn.1000-8144.2022.04.017.
Patel P, Choi C K, Meng D D. Superhydrophilic surfaces for antifoqging and antifouling microfluidic devices[J]. Journal of the Association for Laboratory Automation, 2010, 15(2): 114-119. DOI: 10.1016/j.jala. 2009.10.012http://dx.doi.org/10.1016/j.jala.2009.10.012.
Nie M, Patel P, Sun K, et al. Superhydrophilic anti-fog polyester film by oxygen plasma treatment[C]//IEEE. The 4th IEEE international conference on nano/micro engineered and molecular systems. New York: IEEE, 2009: 1017-1020. DOI: 10. 1109/NEMS.2009.5068746http://dx.doi.org/10.1109/NEMS.2009.5068746.
Mansoor B, Li S S, Chen W. Highly efficient antifogging/antimicrobial dual-functional chitosan based coating for optical devices[J]. Carbohydrate Polymers, 2022, 296: 119928. DOI: 10.1016/j.carbpol.2022.119928http://dx.doi.org/10.1016/j.carbpol.2022.119928.
Gu Y, Zhang B W, Fu Z A, et al. Poly(vinyl alcohol) modification of poly(vinylidene fluoride) microfiltration membranes for oil/water emulsion separation via an unconventional radiation method[J]. Journal of Membrane Science, 2021, 619: 118792. DOI: 10.1016/j.memsci.2020.118792http://dx.doi.org/10.1016/j.memsci.2020.118792.
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构