1.安徽理工大学化工学院 淮南 232001
王冬梅,女,2011年11月出生,安徽理工大学在读本科生,应用化学专业
王斌,硕士,副教授,E-mail: wb6314005@126.com
扫 描 看 全 文
王冬梅, 王斌, 马祥梅, 等. 聚氯乙烯复合膜的制备及其紫外屏蔽性能[J]. 辐射研究与辐射工艺学报, 2023,41(4):040204.
WANG Dongmei, WANG Bin, MA Xiangmei, et al. Preparation of polyvinyl chloride composite membrane and its ultraviolet shielding properties[J]. Journal of Radiation Research and Radiation Processing, 2023,41(4):040204.
王冬梅, 王斌, 马祥梅, 等. 聚氯乙烯复合膜的制备及其紫外屏蔽性能[J]. 辐射研究与辐射工艺学报, 2023,41(4):040204. DOI: 10.11889/j.1000-3436.2022-0136.
WANG Dongmei, WANG Bin, MA Xiangmei, et al. Preparation of polyvinyl chloride composite membrane and its ultraviolet shielding properties[J]. Journal of Radiation Research and Radiation Processing, 2023,41(4):040204. DOI: 10.11889/j.1000-3436.2022-0136.
聚氯乙烯是广泛应用于工业、农业、家居用品等领域的通用塑料之一,具有耐磨、隔热以及成本低等诸多优点。但其在加热或紫外光(UV)辐射下容易变色、降解,限制了材料的实际应用范围。本文利用氯化铜、硫脲和聚噻吩(PTH)对纳米ZnO进行表面包裹改性,制备得到锌-铜-硫复合物,并将其分散在PVC基体中,采用流延法制得PVC复合薄膜。通过傅里叶红外光谱(FTIR)、X射线衍射(XRD)、透射电镜(TEM)和紫外分光光度计对其结构和光学性能进行了测试,探讨了纳米粒子的掺杂对PVC薄膜紫外屏蔽性能的影响。实验结果表明,功能化的ZnO纳米粒子能够明显提高PVC复合膜的紫外屏蔽能力。
Polyvinyl chloride (PVC), which is used as one of the most widely polymer, the general purpose plastic in industry, agriculture, household items and many other fields because of abrasion resistance, thermal insulation, and low cost, etc. Nevertheless, PVC can easily change color, degrade under heating or ultraviolet (UV) light radiation because of its structural features and inherent composition, finally limited the application range of the materialist. To overcome these, the zinc- copper -sulphur composite was prepared with ZnO nanoparticle, copper chloride, thiourea and thiophene, then added to PVC solution, composite films were prepared by a casting method. Transmission electron microscopy (TEM), X-ray powder diffraction spectra (XRD), Fourier transform infrared (FTIR) and ultraviolet (UV) spectrophotometr were applied to study the structure and optical performance. The results showed that the functionalized ZnO NPs could endow the PVC composite films with excellent UV shielding capability.
聚氯乙烯紫外屏蔽纳米ZnO硫化铜聚噻吩
Polyvinyl chlorideUltraviolet shieldingZnO nanoparticleCopper sulfidePolythiophene
Benning J L, Liu Z, Tiwari A, et al. Characterizing gas-particle interactions of phthalate plasticizer emitted from vinyl flooring[J]. Environmental Science & Technology, 2013, 47(6): 2696-2703. DOI: 10.1021/es304725bhttp://dx.doi.org/10.1021/es304725b.
朱雪丹, 姚亚丽, 马利利, 等. 聚氯乙烯基超疏水材料的制备及应用研究进展[J]. 化工进展, 2022, 41(7): 3676-3688. DOI: 10.16085/j.issn.1000-6613.2021-1683http://dx.doi.org/10.16085/j.issn.1000-6613.2021-1683.
ZHU Xuedan, YAO Yali, MA Lili, et al. Progress in preparation and application of superhydrophobic materials based on polyvinyl chloride[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3676-3688. DOI: 10.16085/j.issn.1000-6613.2021-1683http://dx.doi.org/10.16085/j.issn.1000-6613.2021-1683.
Kumar S. Recent developments of biobased plasticizers and their effect on mechanical and thermal properties of poly (vinyl chloride): a review[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11659-11672. DOI: 10.1021/acs.iecr.9b02080http://dx.doi.org/10.1021/acs.iecr.9b02080.
Zhang L K, Cai W W, Chen W Y, et al. Synthesis of AzPhchitosan-bifenthrin-PVC to protect cables against termites[J]. Carbohydrate Polymers, 2016, 139: 50-60. DOI: 10.1016/j.carbpol.2015.11.075http://dx.doi.org/10.1016/j.carbpol.2015.11.075.
Hu Z, Wang S, Zhang X, et al. Simultaneous enhancements of ultraviolet-shielding properties and thermal stability/photostability of poly(vinyl chloride) via incorporation of defect-rich CeO2 nanoparticles[J]. Industrial & Engineering Chemistry Research, 2020, 59: 9959-9968. DOI: 10.1021/acs.iecr.0c00196http://dx.doi.org/10.1021/acs.iecr.0c00196.
Dias A M A, Costa S, Simões P N, et al. Thermal stability and non-isothermal kinetic analysis of suspension poly (vinyl chloride) films formulated with phosphonium-based ionic liquids[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8525-8535. DOI: 10. 1021/acs.iecr.9b00548http://dx.doi.org/10.1021/acs.iecr.9b00548.
武国晶, 朱超, 翁枭迪, 等. 聚氯乙烯基紫外光吸收剂的制备及其抗光老化性能研究[J]. 有机化学, 2016, 36(8): 1963-1969. DOI: 10.6023/cjoc201512046http://dx.doi.org/10.6023/cjoc201512046.
WU Guojing, ZHU Chao, WENG Xiaodi, et al. Preparation of poly(vinyl chloride)-based UV absorbents and their resistence property of photoaging[J]. Chinese Journal of Organic Chemistry, 2016, 36(8): 1963-1969. DOI: 10.6023/cjoc201512046http://dx.doi.org/10.6023/cjoc201512046.
叶挺, 王潮霞, 殷允杰. UV辐照对尼龙6织物结构与性能的影响[J]. 辐射研究与辐射工艺学报, 2021, 39(3): 030204. DOI: 10.11889/j.1000-3436.2021.rrj.39.030204http://dx.doi.org/10.11889/j.1000-3436.2021.rrj.39.030204.
YE Ting, WANG Chaoxia, YIN Yunjie. Effects of ultraviolet irradiation on structure and properties of nylon 6[J]. Journal of Radiation Research and Radiation Processing, 2021, 39(3): 030204. DOI: 10.11889/j.1000-3436.2021.rrj.39.030204http://dx.doi.org/10.11889/j.1000-3436.2021.rrj.39.030204.
李博文, 韩青, 代英杰, 等. 紫外纳米屏蔽材料的研究及应用进展[J]. 当代化工, 2017, 46(12): 2583-2586. DOI: 10.13840/j.cnki.cn21-1457/tq.2017.12.044http://dx.doi.org/10.13840/j.cnki.cn21-1457/tq.2017.12.044.
LI Bowen, HAN Qing, DAI Yingjie, et al. Research and application progress of nano UV-shielding materials[J]. Contemporary Chemical Industry, 2017, 46(12): 2583-2586. DOI: 10.13840/j.cnki.cn21-1457/tq.2017.12.044http://dx.doi.org/10.13840/j.cnki.cn21-1457/tq.2017.12.044.
尹春雷, 袁方利, 黄淑兰. 纳米氧化锌表面包覆氧化铝复合粉体制备及其光催化活性[J]. 过程工程学报, 2003, 3(4): 346-350. DOI: 10.3321/j.issn: 1009-606X. 2003.04.011http://dx.doi.org/10.3321/j.issn:1009-606X.2003.04.011.
YIN Chunlei, YUAN Fangli, HUANG Shulan. Preparation of Al2O3-coated nano-ZnO composite powder for reducing photocatalytic activity[J]. The Chinese Journal of Process Engineering, 2003, 3(4): 346-350. DOI: 10.3321/j.issn: 1009-606X.2003.04.011http://dx.doi.org/10.3321/j.issn:1009-606X.2003.04.011.
Mallakpour S, Behranvand V. Nanocomposites based on biosafe nano ZnO and different polymeric matrixes for antibacterial, optical, thermal and mechanical applications[J]. European Polymer Journal, 2016, 84: 377-403. DOI: 10.1016/j.eurpolymj.2016.09.028http://dx.doi.org/10.1016/j.eurpolymj.2016.09.028.
Patterson B A, Sodano H A. Enhanced interfacial strength and UV shielding of aramid fiber composites through ZnO nanoparticle sizing[J]. ACS Applied Materials & Interfaces, 2016, 8(49): 33963-33971. DOI: 10.1021/acsami.6b07555http://dx.doi.org/10.1021/acsami.6b07555.
Hussain M Z, Schneemann A, Fischer R A, et al. MOF derived porous ZnO/C nanocomposites for efficient dye photodegradation[J]. ACS Applied Energy Materials, 2018, 1(9): 4695-4707. DOI: 10.1021/acsaem.8b00822http://dx.doi.org/10.1021/acsaem.8b00822.
Li Y Q, Fu S Y, Mai Y W. Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency[J]. Polymer, 2006, 47(6): 2127-2132. DOI: 10.1016/j.polymer.2006.01.071http://dx.doi.org/10.1016/j.polymer.2006.01.071.
Kim D, Jeon K, Lee Y, et al. Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO[J]. Progress in Organic Coatings, 2012, 74(3): 435-442. DOI: 10.1016/j.porgcoat.2012.01.007http://dx.doi.org/10.1016/j.porgcoat.2012.01.007.
Ma X M, Dong Z H, Wang B, et al. Preparation of ZnO nanoparticles modified with silane coupling-agents to fabricateanti-UV poly(vinyl chloride) films[J]. Turkish Journal of Chemistry, 2022, 46(2): 542-549. DOI: 10. 55730/1300-0527.3327http://dx.doi.org/10.55730/1300-0527.3327.
Tu Y, Zhou L, Jin Y Z, et al. Transparent and flexible thin films of ZnO-polystyrene nanocomposite for UV-shielding applications[J]. Journal of Materials Chemistry, 2010, 20(8): 1594-1599. DOI: 10.1039/B914156Ahttp://dx.doi.org/10.1039/B914156A.
Ji M, Chen L, Que J, et al. Effects of transition metal oxides on pyrolysis properties of PVC[J]. Process Safety and Environmental Protection, 2020, 140: 211-220. DOI: 10.1016/j.psep.2020.04.010http://dx.doi.org/10.1016/j.psep.2020.04.010.
Wang B, Jiang F, Ma X M, et al. Preparation of highly dispersed ZnO nanoparticles to fabricate ultraviolet-shielding poly(vinyl chloride) films[J].Colloid and Polymer Science, 2022, 300(1): 51-57. DOI: 10.1007/s00396-021-04929-zhttp://dx.doi.org/10.1007/s00396-021-04929-z.
Hu X S, Shen Y, Xu L H, et al. Preparation of flower-like CuS by solvothermal method for photocatalytic, UV protection and EMI shielding applications[J]. Applied Surface Science, 2016, 385: 162-170. DOI: 10.1016/j.apsusc.2016.05.089http://dx.doi.org/10.1016/j.apsusc.2016.05.089.
Nasar A, Perveen R. Applications of enzymatic biofuel cells in bioelectronic devices—a review[J]. International Journal of Hydrogen Energy, 2019, 44: 15287-15312, DOI: 10.1016/j.ijhydene.2019.04.182http://dx.doi.org/10.1016/j.ijhydene.2019.04.182.
Haque S U, Duteanu N, Ciocan S, et al. A review: evolution of enzymatic biofuel cells[J]. Journal of Environmental Management, 2021, 298: 113483. DOI: 10.1016/j.jenvman.2021.113483http://dx.doi.org/10.1016/j.jenvman.2021.113483.
Subash V S, Varghese L, Chen S M, et al. Highly soluble polythiophene-based strontium-doped NiO nanocomposite for effective electrochemical detection of catechol in contaminated water[J]. Journal of Molecular Liquids, 2021, 334: 116490. DOI: 10.1016/j.molliq.2021.116490http://dx.doi.org/10.1016/j.molliq.2021.116490.
Sufiaul H, Narcis D, Abu N, et al. Polythiophene-titanium oxide (PTH-TiO2) nanocomposite: as an electron transfer enhancer for biofuel cell anode construction[J]. Journal of Power Sources, 2022, 520: 230867. DOI: 10.1016/j.jpowsour.2021.230867http://dx.doi.org/10.1016/j.jpowsour.2021.230867.
Amruth K, Abhirami K M, Sankar S. Synthesis, characterization, dielectric properties and gas sensing application of polythiophene/chitosan nanocomposites[J]. Inorganic Chemistry Communications, 2022, 136: 109184. DOI: 10.1016/j.inoche.2021.109184http://dx.doi.org/10.1016/j.inoche.2021.109184.
Amruth K, Abhirami K M, Sankar S. Synthesis, characterization, dielectric properties and gas sensing application of polythiophene/chitosan nanocomposites[J]. Inorganic Chemistry Communications, 2022, 136: 109184. DOI: 10.1016/j.inoche.2021.109184http://dx.doi.org/10.1016/j.inoche.2021.109184.
Wang Z M, Wang H, Wang X X, et al. Correlation between photocorrosion of ZnO and lattice relaxation induced by its surface vacancies[J]. The Journal of Physical Chemistry C, 2021, 125(5): 3242-3255. DOI: 10.1021/acs.jpcc.0c11260http://dx.doi.org/10.1021/acs.jpcc.0c11260.
赵琳, 高晗, 韦冰心, 等. 颜料二氧化钛光催化特性评价[J]. 化工学报, 2013, 64(7): 2453-2461. DOI: 10.3969/j.issn.0438-1157.2013.07.020http://dx.doi.org/10.3969/j.issn.0438-1157.2013.07.020.
ZHAO Lin, GAO Han, WEI Bingxin, et al. Evaluation of photocatalytic activity of pigmentary titania[J]. CIESC Journal, 2013, 64(7): 2453-2461. DOI: 10.3969/j.issn. 0438-1157.2013.07.020http://dx.doi.org/10.3969/j.issn.0438-1157.2013.07.020.
0
浏览量
21
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构