1.遵义市肿瘤临床医学中心 遵义市第一人民医院(遵义医科大学第三附属医院)放疗中心 遵义 563099
陈车,男,1990年01月出生,2016年7月于重庆大学获得硕士学位
罗德红,副主任医师,E-mail: 13985614568@163.com
扫 描 看 全 文
陈车, 陈睿, 陆治江, 等. 多叶准直器角度改变对左侧全乳大分割放疗瘤床推量的剂量学影响[J]. 辐射研究与辐射工艺学报, 2023,41(4):51-57.
CHEN Che, CHEN Rui, LU Zhijiang, et al. Dosimetric effect of multi-leaf collimator angle change on the left-sided breast hypofractionated radiotherapy with simultaneous integrated boost[J]. Journal of Radiation Research and Radiation Processing, 2023,41(4):51-57.
陈车, 陈睿, 陆治江, 等. 多叶准直器角度改变对左侧全乳大分割放疗瘤床推量的剂量学影响[J]. 辐射研究与辐射工艺学报, 2023,41(4):51-57. DOI: 10.11889/j.1000-3436.2022-0141.
CHEN Che, CHEN Rui, LU Zhijiang, et al. Dosimetric effect of multi-leaf collimator angle change on the left-sided breast hypofractionated radiotherapy with simultaneous integrated boost[J]. Journal of Radiation Research and Radiation Processing, 2023,41(4):51-57. DOI: 10.11889/j.1000-3436.2022-0141.
研究动态调强放疗方式下多叶准直器角度改变对左侧全乳大分割放疗内侧、中间和外侧瘤床同期推量的剂量学影响。选取2018年01月至2023年01月间于遵义第一人民医院收治的左侧乳腺癌保乳术后行全乳大分割放疗瘤床同期推量患者60例,按瘤床位置分为内侧、中间和外侧3组,分别对比各组患者多叶准直器角度改变的放疗计划(标记为Plan-A)与多叶准直器角度为0°的原放疗计划(标记为Plan-O)的靶区、心肺剂量学参数差异。结果显示:3组患者的Plan-A较Plan-O,靶区处方覆盖(,V,处方(%),)、适形度指数(Conformity Index,CI)和均匀性指数(Homogeneity Index,HI)均无显著差异;在内侧组采用Plan-A相较于Plan-O,左肺(,V,5,、,V,10,和,D,mean,)、心脏(,V,8,和,D,mean,)和冠状动脉左前降支(LAD)(,D,max,和,D,mean,)均降低,差异有统计学意义(,p,<,0.05);同时Plan-A较Plan-O,在中间和外侧组中仅外侧组LAD(,D,max,和,D,mean,)明显减小(,p,<,0.05),其余心肺受量参数均无显著差异。准直器角度改变对左侧全乳大分割放疗瘤床推量靶区剂量学参数无明显影响,但能使内侧组患者的心肺受量较原放疗计划明显减小,故对于左侧大分割单纯全乳放疗内侧瘤床制定放疗计划建议选择改变多叶准直器角度。
This study aimed to evaluate the effects of multi-leaf collimator angle change on the dosimetric parameters of the medial, central, and lateral tumor bed boost in hypofractionated left whole-breast irradiation with dynamic multi-leaf collimator technology. Sixty patients with early breast cancer following conservative surgery who underwent hypofractionated radiotherapy with tumor bed boost were enrolled from The First People’s Hospital of Zunyi between January 2018 and January 2023. All patients were classified into three groups according to the location of the tumor bed: medial, central, and lateral. The differences in target volume and cardiopulmonary dosimetric parameters between the plan of multi-leaf collimator angle change (labeled as Plan-A) and the original plan of 0° multi-leaf collimator angle (labeled as Plan-O) were compared in each group. The results did not show any significant differences in the coverage of the target prescription, conformability index, and homogeneity index between Plan-A and Plan-O of the three groups. In the medial group, the left lung ,V,5,V,10, and ,D,mean,; heart ,V,8, and ,D,mean,; and left anterior descending artery (LAD) ,D,max, and ,D,mean, of Plan-A were significantly lower than those of Plan-O (,p,<,0.05). Meanwhile, in the central and lateral groups, only the LAD ,D,max, and ,D,mean, of Plan-A decreased significantly in the lateral group, and no differences were observed in other cardiopulmonary parameters compared to those in Plan-O (,p,<,0.05). In conclusion, the change in collimator angle did not have a significant effect on the target dosimetric parameters of hypofractionated radiotherapy with tumor bed boost for the left breast. On the contrary, it could significantly reduce the cardiopulmonary dose in the medial group compared to the original radiotherapy plan. Given this information, it is recommended to change the multi-leaf collimator angle for the radiotherapy plan of the medial tumor bed group in left whole-breast hypofractionated radiotherapy.
乳腺癌多叶准直器大分割放疗瘤床位置剂量学
Breast cancerMulti-leaf collimatorHypofractionated radiotherapyTumor bed locationDosimetry
Shah C, Bauer-Nilsen K, McNulty R H, et al. Novel radiation therapy approaches for breast cancer treatment[J]. Seminars in Oncology, 2020, 47(4): 209-216. DOI: 10.1053/j.seminoncol.2020.05.003http://dx.doi.org/10.1053/j.seminoncol.2020.05.003.
Andrade T R M, Fonseca M C M, Segreto H R C, et al. Meta-analysis of long-term efficacy and safety of hypofractionated radiotherapy in the treatment of early breast cancer[J]. The Breast, 2019, 48: 24-31. DOI: 10. 1016/j.breast.2019.08.001http://dx.doi.org/10.1016/j.breast.2019.08.001.
Kim D Y, Park E, Heo C Y, et al. Hypofractionated versus conventional fractionated radiotherapy for breast cancer in patients with reconstructed breast: Toxicity analysis[J]. The Breast, 2021, 55: 37-44. DOI: 10.1016/j.breast. 2020.11.020http://dx.doi.org/10.1016/j.breast.2020.11.020.
Yu T, Li Y K, Sun T, et al. A comparative study on hypofractionated whole-breast irradiation with sequential or simultaneous integrated boost on different positions after breast-conserving surgery[J]. Scientific Reports, 2021, 11: 18017. DOI: 10.1038/s41598-021-97520-zhttp://dx.doi.org/10.1038/s41598-021-97520-z.
Sastre-Padro M, Welleweerd J, Malinen E, et al. Consequences of leaf calibration errors on IMRT delivery[J]. Physics in Medicine and Biology, 2007, 52(4): 1147-1156. DOI: 10.1088/0031-9155/52/4/019http://dx.doi.org/10.1088/0031-9155/52/4/019.
Michalski A, Atyeo J, Cox J, et al. A dosimetric comparison of 3D-CRT, IMRT, and static tomotherapy with an SIB for large and small breast volumes[J]. Medical Dosimetry, 2014, 39(2): 163-168. DOI: 10.1016/j.meddos.2013.12.003http://dx.doi.org/10.1016/j.meddos.2013.12.003.
Masannat Y A, Lazaraviciute G, Garbett I K, et al. The relationship between cardiac dosimetry and tumour quadrant location in left sided whole breast and chest wall adjuvant radiotherapy[J]. Breast Disease, 2021, 41(1): 67-74. DOI: 10.3233/bd-201025http://dx.doi.org/10.3233/bd-201025.
Bouchardy C, Rapiti E, Usel M, et al. Excess of cardiovascular mortality among node-negative breast cancer patients irradiated for inner-quadrant tumors[J]. Annals of Oncology, 2010, 21(3): 459-465. DOI: 10.1093/annonc/mdp341http://dx.doi.org/10.1093/annonc/mdp341.
Bräutigam E, Track C, Seewald D H, et al. Medial tumor localization in breast cancer — an unappreciated risk factor?[J]. Strahlentherapie Und Onkologie, 2009, 185(10): 663-668. DOI: 10.1007/s00066-009-1984-xhttp://dx.doi.org/10.1007/s00066-009-1984-x.
Fekete G, Újhidy D, Együd Z, et al. Partial breast radiotherapy with simple teletherapy techniques[J]. Medical Dosimetry, 2015, 40(4): 290-295. DOI: 10.1016/j.meddos.2015.03.006http://dx.doi.org/10.1016/j.meddos.2015.03.006.
Abo-Madyan Y, Polednik M, Rahn A, et al. Improving dose homogeneity in large breasts by IMRT[J]. Strahlentherapie Und Onkologie, 2008, 184(2): 86-92. DOI: 10.1007/s00066-008-1730-9http://dx.doi.org/10.1007/s00066-008-1730-9.
Kim M J, Park S H, Son S H, et al. Comparison study of the partial-breast irradiation techniques: Dosimetric analysis of three-dimensional conformal radiation therapy, electron beam therapy, and helical tomotherapy depending on various tumor locations[J]. Medical Dosimetry, 2013, 38(3): 327-331. DOI: 10.1016/j.meddos.2013.03.004http://dx.doi.org/10.1016/j.meddos.2013.03.004.
潘香, 杨毅, 侯宇, 等. 基于Monaco的不同布野方式在左乳腺癌保乳术后调强放疗中的剂量学差异[J]. 实用临床医药杂志, 2021, 25(1): 1-5. DOI: 10.7619/jcmp. 20200621http://dx.doi.org/10.7619/jcmp.20200621.
PAN Xiang, YANG Yi, HOU Yu, et al. Dosimetric differences of different radiation modes based on Monaco in postoperative intensity modulated radiotherapy of patients with left breast-conserving surgery for breast cancer[J]. Journal of Clinical Medicine in Practice, 2021, 25(1): 1-5. DOI: 10.7619/jcmp.20200621http://dx.doi.org/10.7619/jcmp.20200621.
LoSasso T. IMRT delivery performance with a varian multileaf collimator[J]. International Journal of Radiation Oncology*Biology*Physics, 2008, 71(1): S85-S88. DOI: 10.1016/j.ijrobp.2007.06.082http://dx.doi.org/10.1016/j.ijrobp.2007.06.082.
Okumura M, Obata Y, Shimomura K, et al. The effect of gantry and collimator angles on leaf limited velocity and position in dynamic multileaf collimator intensity-modulated radiation therapy[J]. Physics in Medicine and Biology, 2010, 55(11): 3101-3113. DOI: 10.1088/0031-9155/55/11/008http://dx.doi.org/10.1088/0031-9155/55/11/008.
李长虎, 张春莉, 徐利明, 等. 多叶准直器角度因素对调强放疗计划实施效率的影响[J]. 中华放射肿瘤学杂志, 2013, 22(6): 482-484. DOI: 10.3760/cma.j.issn.1004-4221.2013.06.016http://dx.doi.org/10.3760/cma.j.issn.1004-4221.2013.06.016.
LI Changhu, ZHANG Chunli, XU Liming, et al. The influence of multileaf collimator angle on delivery efficiency for IMRT treatment[J]. Chinese Journal of Radiation Oncology, 2013, 22(6): 482-484. DOI: 10.3760/cma.j.issn.1004-4221.2013.06.016http://dx.doi.org/10.3760/cma.j.issn.1004-4221.2013.06.016.
王升晔, 杜向慧, 陈明. 减少乳腺癌心脏照射剂量的放疗技术研究进展[J]. 影像研究与医学应用, 2019, 3(23): 1-5.
WANG Shengye, DU Xianghui, CHEN Ming. Techniques to reduce the cardiac dose in breast cancer radiotherapy[J]. Journal of Imaging Research and Medical Applications, 2019, 3(23): 1-5.
张桂芳, 卢洁, 马长升, 等. 直线加速器二级准直器在乳腺癌根治术后调强放疗计划中的应用[J]. 中华放射医学与防护杂志, 2017, 37(8): 594-598. DOI: 10.3760/cma.j.issn.0254-5098.2017.08.006http://dx.doi.org/10.3760/cma.j.issn.0254-5098.2017.08.006.
ZHANG Guifang, LU Jie, MA Changsheng, et al. Application of liner-accelerator two-degrade collimator in the treatment of breast cancer after radical mastectomy with intensity-modulated radiotherapy[J]. Chinese Journal of Radiological Medicine and Protection, 2017, 37(8): 594-598. DOI: 10.3760/cma.j.issn.0254-5098. 2017.08.006http://dx.doi.org/10.3760/cma.j.issn.0254-5098.2017.08.006.
解小丽, 翟小娟. 调整次级准直器对鼻咽癌放疗剂量分布的影响[J]. 中国医疗器械信息, 2020, 26(8): 42-43. DOI: 10.15971/j.cnki.cmdi.2020.08.022http://dx.doi.org/10.15971/j.cnki.cmdi.2020.08.022.
XIE Xiaoli, ZHAI Xiaojuan. The impact of collimator for nasopharyngeal carcinoma in radiotherapy[J]. China Medical Device Information, 2020, 26(8): 42-43. DOI: 10.15971/j.cnki.cmdi.2020.08.022http://dx.doi.org/10.15971/j.cnki.cmdi.2020.08.022.
王学敏, 毛惠会, 常晓斌, 等. 准直器角度对肺癌SBRT-VMAT治疗计划的影响[J]. 现代肿瘤医学, 2021, 29(6): 1005-1008. DOI: 10.3969/j.issn.1672-4992.2021.06.021http://dx.doi.org/10.3969/j.issn.1672-4992.2021.06.021.
WANG Xuemin, MAO Huihui, CHANG Xiaobin, et al. Effects of collimator angle on stereotactic body radiation therapy-volumetric modulated arc therapy in lung cancer[J]. Journal of Modern Oncology, 2021, 29(6): 1005-1008. DOI: 10.3969/j.issn.1672-4992.2021.06.021http://dx.doi.org/10.3969/j.issn.1672-4992.2021.06.021.
林建海, 傅志超, 骆华春, 等. 宫颈癌放疗中多叶准直器角度改变对放疗过程的影响[J]. 现代肿瘤医学, 2019, 27(23): 4256-4258. DOI: 10.3969/j.issn.1672-4992. 2019.23.030http://dx.doi.org/10.3969/j.issn.1672-4992.2019.23.030.
LIN Jianhai, FU Zhichao, LUO Huachun, et al. The effects of angle change of multileaf collimator on dose distribution in cervical cancer radiation therapy[J]. Journal of Modern Oncology, 2019, 27(23): 4256-4258. DOI: 10.3969/j.issn.1672-4992.2019.23.030http://dx.doi.org/10.3969/j.issn.1672-4992.2019.23.030.
曹征, 李红霞, 鲍杨漪. 前列腺癌调强计划改变多叶准直器角度对直肠和膀胱剂量的影响[J]. 中国医学物理学杂志, 2010, 27(3): 1844-1847. DOI: 10.3969/j.issn. 1005-202X.2010.03.006http://dx.doi.org/10.3969/j.issn.1005-202X.2010.03.006.
CAO Zheng, LI Hongxia, BAO Yangyi. The impact of change angle of multi-leaf collimator on the dose distribution of the intensity-modulated radiation therapy plan for prostate cancer[J]. Chinese Journal of Medical Physics, 2010, 27(3): 1844-1847. DOI: 10.3969/j.issn. 1005-202X.2010.03.006http://dx.doi.org/10.3969/j.issn.1005-202X.2010.03.006.
陈恩乐, 吴魁, 董事, 等. 改变多叶准直器角度对调强放疗计划效率的影响[J]. 中国医学物理学杂志, 2015, 32(3): 437-439. DOI: 10.3969/j.issn.1005-202X.2015.03.030http://dx.doi.org/10.3969/j.issn.1005-202X.2015.03.030.
CHEN Enle, WU Kui, DONG Shi, et al. Impacts of the angle of multi- leaf collimator on efficiency of intensity- modulated radiation therapapy[J]. Chinese Journal of Medical Physics, 2015, 32(3): 437-439. DOI: 10.3969/j.issn.1005-202X.2015.03.030http://dx.doi.org/10.3969/j.issn.1005-202X.2015.03.030.
顾恒乐, 王昊, 陈华, 等. 准直器角度对胸上段食管癌容积旋转调强放疗剂量的影响[J]. 中华放射医学与防护杂志, 2016, 36(7): 505-508. DOI: 10.3760/cma.j.issn.0254-5098.2016.07.006http://dx.doi.org/10.3760/cma.j.issn.0254-5098.2016.07.006.
GU Hengle, WANG Hao, CHEN Hua, et al. Dosimetric impact of collimator angles on VMAT planning for upper thoracic esophageal carcinoma[J]. Chinese Journal of Radiological Medicine and Protection, 2016, 36(7): 505-508. DOI: 10.3760/cma.j.issn.0254-5098.2016.07.006http://dx.doi.org/10.3760/cma.j.issn.0254-5098.2016.07.006.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构