1.中国科学院上海应用物理研究所 上海 201800
2.中国科学院大学 北京 100049
3.四川大学华西医院医学装备创新研究中心 成都 610041
4.(太丛信息科技(上海)有限公司 上海 200233)
5.南京迈丛医疗科技有限公司 南京 210023
6.江苏省人民医院肿瘤放射治疗科 南京 210029
7.湖南省肿瘤医院放射物理技术部 长沙 410013
周云,男,1984年6月出生,2008年硕士毕业于中国矿业大学,目前为中国科学院博士研究生在读
薄越虎,教授,E-mail: puyuehu@163.com
扫 描 看 全 文
周云, 陈蔚海, 刘永彪, 等. 一种改进型放射外科准直器的设计和研究[J]. 辐射研究与辐射工艺学报, 2023,41(3):030304.
ZHOU Yun, CHEN Weihai, LIU Yongbiao, et al. Design and research of an improved radiosurgical collimator[J]. Journal of Radiation Research and Radiation Processing, 2023,41(3):030304.
周云, 陈蔚海, 刘永彪, 等. 一种改进型放射外科准直器的设计和研究[J]. 辐射研究与辐射工艺学报, 2023,41(3):030304. DOI: 10.11889/j.1000-3436.2022-0142.
ZHOU Yun, CHEN Weihai, LIU Yongbiao, et al. Design and research of an improved radiosurgical collimator[J]. Journal of Radiation Research and Radiation Processing, 2023,41(3):030304. DOI: 10.11889/j.1000-3436.2022-0142.
本文基于Hygeia公司GMX-1型钴(,60,Co)放射外科系统,采用蒙特卡罗模拟程序GEANT4设计了一款新型准直器并进行了实测分析。该准直器在锥形通孔内置锥形环孔聚焦结构。EBT3胶片测量结果表明,在放射源活度、源轴距、射野尺寸等保持不变的条件下,该改进型准直器的射野半影比原来减小17.6%,吸收剂量率是原来的2.12倍。该改进型准直器在中心点吸收剂量率、射野半影两个关键技术参数上具有显著优势。
In this paper, a new collimator based on Hygeia GMX-1 cobalt (,60,Co) radiosurgery system was designed and analyzed using the Monte Carlo simulation program GEANT4. The results of EBT3 film measurements showed that the field penumbra of the improved collimator was reduced by 17.6% and the absorbed dose rate was 2.12 times higher, while the source activity, source axis distance and field size remained unchanged. The collimator has significant advantages in the two key technical parameters of absorbed dose rate and penumbra.
放射治疗准直器剂量率射野半影
RadiotherapyCollimatorDose ratePenumbra
Flickinger J C, Maesawa S, Kondziolka D, et al. An analysis of the clinical radiobiology of arteriovenous malformation obliteration by radiosurgery[J]. International Journal of Radiation Oncology *Biology*Physics, 2000, 48(3): 255. DOI: 10.1016/s0360-3016(00)80308-9http://dx.doi.org/10.1016/s0360-3016(00)80308-9.
Hayashi M, Izawa M, Hiyama H, et al. Gamma knife radiosurgery for pituitary adenomas[J]. Stereotactic and Functional Neurosurgery, 1999, 72(1): 111-118. DOI: 10. 1159/000056446http://dx.doi.org/10.1159/000056446.
Stafford S L, Pollock B E, Foote R L, et al. Meningioma radiosurgery: tumor control, outcomes, and complications among 190 consecutive patients[J]. Neurosurgery, 2001, 49(5): 1029-1038. DOI: 10.1097/00006123-200111000- 00001http://dx.doi.org/10.1097/00006123-200111000-00001.
Pollock B E, Phuong L K, Gorman D A, et al. Stereotactic radiosurgery for idiopathic trigeminal neuralgia[J]. Journal of Neurosurgery, 2002, 97(2): 347-353. DOI: 10.3171/jns.2002.97.2.0347http://dx.doi.org/10.3171/jns.2002.97.2.0347.
Young R F, Shumway-Cook A, Vermeulen S S, et al. Gamma knife radiosurgery as a lesioning technique in movement disorder surgery[J]. Journal of Neurosurgery, 1998, 89(2): 183-193. DOI: 10.3171/jns.1998.89.2.0183http://dx.doi.org/10.3171/jns.1998.89.2.0183.
Chandra R A, Keane F K, Voncken F E M, et al. Contemporary radiotherapy: present and future[J]. Lancet (London, England), 2021, 398(10295): 171-184. DOI: 10. 1016/S0140-6736(21)00233-6http://dx.doi.org/10.1016/S0140-6736(21)00233-6.
Mehrens H, Nguyen T, Edward S, et al. The Current status and shortcomings of stereotactic radiosurgery[J]. Neuro-Oncology Advances, 2022, 4(1): vdac058. DOI: 10.1093/noajnl/vdac058http://dx.doi.org/10.1093/noajnl/vdac058.
Ma L J, Wang L, Tseng C L, et al. Emerging technologies in stereotactic body radiotherapy[J]. Chinese Clinical Oncology, 2017, 6(Suppl 2): S12. DOI: 10.21037/cco. 2017.06.19http://dx.doi.org/10.21037/cco.2017.06.19.
全国医用电器标准化技术委员会放射治疗分技术委员会. γ射束立体定向放射治疗系统第1部分:头部多源γ射束立体定向放射治疗系统[M]. 北京: 中国标准出版社, 2013.
National Medical Electrical Standardization Technical Committee Radiation Therapy Sub-Technical Committee. Stereotactic radiotherapy system with gamma beam—Part 1: multi-source stereotactic radiotherapy system with gamma beam for head lesion[M]. Beijing: Standard Press of China, 2013.
全国医用电器标准化技术委员会放射治疗分技术委员会. γ射束立体定向放射治疗系统第2部分:体部多源γ射束立体定向放射治疗系统[M]. 北京: 中国标准出版社, 2017.
National Medical Electrical Standardization Technical Committee Radiation Therapy Sub-Technical Committee. Stereotactic radiotherapy system with gamma beam—Part 2: multi-source stereotactic radiotherapy system with gamma beam for body lesion[M]. Beijing: Standard Press of China, 2017.
Wang J H, Wang L, Maxim P G, et al. An automated optimization strategy to design collimator geometry for small field radiation therapy systems[J]. Physics in Medicine & Biology, 2021, 66(7): 075016. DOI: 10.1088/1361-6560/abeba9http://dx.doi.org/10.1088/1361-6560/abeba9.
廖浪, 宋瑞英, 程鹏. 6 MeV医用电子直线加速器中束斑尺寸的计算与测量[J]. 核技术, 2016, 39(6): 060203. DOI: 10.11889/j.0253-3219.2016.hjs.39.060203http://dx.doi.org/10.11889/j.0253-3219.2016.hjs.39.060203.
LIAO Lang, SONG Ruiying, CHENG Peng. Beam spot size calculation and measurement of 6-MeV medical linear accelerator[J]. Nuclear Techniques, 2016, 39(6): 060203. DOI: 10.11889/j.0253-3219.2016.hjs.39.060203http://dx.doi.org/10.11889/j.0253-3219.2016.hjs.39.060203.
Hermida-López M, Sánchez-Artuñedo D, Rodríguez M, et al. Monte Carlo simulation of conical collimators for stereotactic radiosurgery with a 6 MV flattening-filter-free photon beam[J]. Medical Physics, 2021, 48(6): 3160-3171. DOI: 10.1002/mp.14837http://dx.doi.org/10.1002/mp.14837.
蒋海青, 何伟荣, 蔡锡明, 等. 钴源与加速器辐照效应及辐照加工试验综合平台[J]. 辐射研究与辐射工艺学报, 2022, 40(1): 011301. DOI: 10.11889/j.1000-3436.2022-0007http://dx.doi.org/10.11889/j.1000-3436.2022-0007.
JIANG Haiqing, HE Weirong, CAI Ximing, et al. Integrated 60Co and electron accelerator platform for irradiation effect and irradiation processing tests[J]. Journal of Radiation Research and Radiation Processing, 2022, 40(1): 011301. DOI: 10.11889/j.1000-3436.2022-0007http://dx.doi.org/10.11889/j.1000-3436.2022-0007.
贾文宝, 陈奕泽, 黑大千, 等. 基于多编码板准直器的瞬发γ射线活化成像[J]. 核技术, 2022, 45(10): 100201. DOI: 10.11889/j.0253-3219.2022.hjs.45.100201http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.100201.
JIA Wenbao, CHEN Yize, HEI Daqian, et al. Prompt gamma-ray activation imaging based on multi coded-aperture collimators[J]. Nuclear Techniques, 2022, 45(10): 100201. DOI: 10.11889/j.0253-3219.2022.hjs.45. 100201http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.100201.
Natesan P, Palaniappan S M, M M, et al. Determination of collimator helmet factors for leksell gamma knife 4C unit using GAF chromic EBT3 film and ImageJ software[J]. Asian Pacific Journal of Cancer Prevention: APJCP, 2021, 22(12): 4031-4035. DOI: 10.31557/APJCP.2021. 22.12.4031http://dx.doi.org/10.31557/APJCP.2021.22.12.4031.
Bhatnagar J P, Novotny J, Huq M S. Dosimetric characteristics and quality control tests for the collimator sectors of the Leksell Gamma Knife(®) Perfexion(TM)[J]. Medical Physics, 2012, 39(1): 231-236. DOI: 10. 1118/1.3668057http://dx.doi.org/10.1118/1.3668057.
Lim S B, Kuo L C, Li T F, et al. Comparative study of SRS end-to-end QA processes of a diode array device and an anthropomorphic phantom loaded with GafChromic XD film[J]. Journal of Applied Clinical Medical Physics, 2022, 23(9): e13747. DOI: 10.1002/acm2.13747http://dx.doi.org/10.1002/acm2.13747.
Ma L J, Kjäll P, Novotny J, et al. A simple and effective method for validation and measurement of collimator output factors for Leksell Gamma Knife Perfexion[J]. Physics in Medicine and Biology, 2009, 54(12): 3897-3907. DOI: 10.1088/0031-9155/54/12/019http://dx.doi.org/10.1088/0031-9155/54/12/019.
Zeverino M, Jaccard M, Patin D, et al. Commissioning of the leksell gamma knife® icon™[J]. Medical Physics, 2017, 44(2): 355-363. DOI: 10.1002/mp.12052http://dx.doi.org/10.1002/mp.12052.
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构