1.中国科学技术大学核科学技术学院 合肥 230026
2.中国科学技术大学国家同步辐射实验室 合肥 230029
林蕴良,男,1997年7月出生,2020年6月于中国科学技术大学获学士学位,目前为中国科学技术大学在读硕士研究生,核科学与技术专业
林铭章,教授,博士生导师,E-mail: gelin@ustc.edu.cn
扫 描 看 全 文
林蕴良, 郭子方, 林子健, 等. 含铜离子水溶液的辐射分解行为[J]. 辐射研究与辐射工艺学报, 2023,41(4):040201.
LIN Yunliang, GUO Zifang, LIN Zijian, et al. Radiolysis of aqueous solution containing copper ions[J]. Journal of Radiation Research and Radiation Processing, 2023,41(4):040201.
林蕴良, 郭子方, 林子健, 等. 含铜离子水溶液的辐射分解行为[J]. 辐射研究与辐射工艺学报, 2023,41(4):040201. DOI: 10.11889/j.1000-3436.2023-0006.
LIN Yunliang, GUO Zifang, LIN Zijian, et al. Radiolysis of aqueous solution containing copper ions[J]. Journal of Radiation Research and Radiation Processing, 2023,41(4):040201. DOI: 10.11889/j.1000-3436.2023-0006.
铜与铜合金广泛应用于核材料领域,对于材料腐蚀控制和氢爆风险评估,含铜离子水溶液辐解的影响必须予以考虑。本工作开展了含铜离子水溶液γ辐解实验,探究了不同吸收剂量、吸收剂量率和Cu,2+,浓度对H,2,O,2,、O,2,和H,2,生成的影响。实验结果表明:随着吸收剂量的增加(0~1.80 kGy),H,2,O,2,和气相中H,2,的浓度先增大后趋于稳态,其稳态浓度分别为5.41×10,-6, mol/L和7.91×10,-5, mol/L,而气相中O,2,的浓度则维持在9.04×10,-4, mol/L。Cu,2+,的存在使H,2,、H,2,O,2,的平衡浓度分别提升一个和两个数量级,对H,2,O,2,、H,2,的生成起到促进作用,但对O,2,的生成基本没有影响。H,2,O,2,和H,2,的平衡浓度随着吸收剂量率的增大而升高,当吸收剂量率从1.40 Gy/min增大到46.93 Gy/min,其平衡浓度分别从4.56×10,-6, mol/L和1.78×10,-5, mol/L升高到2.46×10,-5, mol/L和3.81×10,-4, mol/L,而在此吸收剂量率范围内O,2,基本不受影响。同时,基于水辐解反应动力学和气液两相传质双膜理论,我们构建了含铜离子水溶液辐解计算模型。模拟结果与实验数据相比,标准化平均偏差的绝对值基本在1%~7%之间,最大约24%,证明了计算模型的有效性和正确性。在此基础上,运用该模型计算了C,6+,离子辐照下含铜离子水溶液的辐解行为,模拟结果与文献报道的实验数据吻合良好,表明模型具备可扩展性。
Copper and copper alloys are widely used in the field of nuclear materials. The effects of aqueous solutions that have undergone copper ion radiolysis on the generation of H,2,O,2, O,2, and H,2, must be considered for material corrosion control and hydrogen explosion risk assessment. In this study, a γ-radiolysis experiment of an aqueous solution containing copper ions was conducted to explore the effects of different absorbed doses, absorption dose rates, and Cu,2+, concentrations on the generation of H,2,O,2, O,2, and H,2,. The results showed that with an increase in the absorbed dose (0-1.80 kGy), the concentrations of H,2,O,2, and H,2,(g) firstly increased and then tended to stabilize under steady-state concentrations of 5.41×10,-6, and 7.91×10,-5, mol/L, respectively, whereas the concentration of O,2,(g) remained at 9.04×10,-4, mol/L. The presence of Cu,2+, enhanced the equilibrium concentrations of H,2, and H,2,O,2, by one and two orders of magnitude, respectively, which in turn promoted the generation of H,2,O,2, and H,2,; however, it had a negligible effect on O,2, generation. The equilibrium concentrations of H,2,O,2, and H,2, increased with an increase in the absorption dose rate. Specifically, when the absorption dose rate was increased from 1.40 to 46.93 Gy/min, the equilibrium concentrations of H,2,O,2, and H,2, increased from 4.56×10,-6, and 1.78×10,-5, mol/L to 2.46×10,-5, and 3.81×10,-4, mol/L, respectively, whereas O,2, remained essentially unaffected within this absorption dose rate range. In addition, based on the kinetics of water radiolysis and two-film theory of gas-liquid mass transfer, we constructed a calculation model for the radiolysis of aqueous solutions containing copper ions. Compared with the experimental data, the absolute values of the normalized mean bias in the simulation results were mostly between 1% and 7%, with a maximum of approximately 24%, thereby demonstrating the effectiveness and correctness of the calculation model. Accordingly, the model was used to calculate the radiolytic behavior of an aqueous solution containing copper ions under C,6+, ion irradiation, and the simulation results matched well with the experimental data reported in the literature, indicating that the model can be expanded to other applications.
含铜离子水溶液γ射线辐射分解化学动力学模拟
Aqueous solution containing copper ionγ-raysRadiolysisChemical kinetics modeling
King F, Ahonen L, Taxén C, et al. Copper corrosion under expected conditions in a deep geologic repository[R/OL]. (2001-12-19)[2023-02-10]. http://www.ski.se/dynamaster/file_archive/011219/7958921098/01%2d40.pdfhttp://www.ski.se/dynamaster/file_archive/011219/7958921098/01%2d40.pdf.
彭吴擎亮, 李强, 常永勤, 等. 核聚变堆偏滤器热沉材料研究现状及展望[J]. 金属学报, 2021, 57(7): 831-844. DOI: 10.11900/0412.1961.2020.00376http://dx.doi.org/10.11900/0412.1961.2020.00376.
PENG Wuqingliang, LI Qiang, CHANG Yongqin, et al. A review on the development of the heat sink of the fusion reactor divertor[J]. Acta Metallurgica Sinica, 2021, 57(7): 831-844. DOI: 10.11900/0412.1961.2020.00376http://dx.doi.org/10.11900/0412.1961.2020.00376.
Spotheim-Maurizot M, Mostafavi M, Douki T, et al. Radiation chemistry: from basics to applications in material and life sciences[M]. Les Ulis, France: EDP Sciences, 2008.
Macdonald D D. Viability of hydrogen water chemistry for protecting In-vessel components of boiling water reactors[J]. Corrosion, 1992, 48(3): 194-205. DOI: 10. 5006/1.3315925http://dx.doi.org/10.5006/1.3315925.
Ibrahim B, Zagidulin D, Smith J M, et al. Radiolytic corrosion of Cu nuclear waste containers[C]//Canadian Nuclear Society:17th International conference in environmental degradation of materials in nuclear power systems — Water reactors. New York:Curran Associates, Inc. 2015: 1878-1891.
Soroka I, Chae N, Jonsson M. On the mechanism of γ-radiation-induced corrosion of copper in water[J]. Corrosion Science, 2021, 182: 109279. DOI: 10.1016/j.corsci.2021.109279http://dx.doi.org/10.1016/j.corsci.2021.109279.
朱卉平, 刘旭东, 陈嘉威, 等. 聚变堆用CuCrZr合金腐蚀模型研究及实验验证[J]. 核技术, 2020, 43(11): 80-86. DOI: 10.11889/j.0253-3219.2020.hjs.43.110602http://dx.doi.org/10.11889/j.0253-3219.2020.hjs.43.110602.
ZHU Huiping, LIU Xudong, CHEN Jiawei, et al. Study on corrosion model and experimental verification of CuCrZr alloy for fusion reactor[J]. Nuclear Techniques, 2020, 43(11): 80-86. DOI: 10.11889/j.0253-3219.2020.hjs.43.110602http://dx.doi.org/10.11889/j.0253-3219.2020.hjs.43.110602.
Joseph J M, Choi B S, Yakabuskie P, et al. A combined experimental and model analysis on the effect of pH and O2(aq) on γ-radiolytically produced H2 and H2O2[J]. Radiation Physics and Chemistry, 2008, 77(9): 1009-1020. DOI: 10.1016/j.radphyschem.2008.06.001http://dx.doi.org/10.1016/j.radphyschem.2008.06.001.
彭静. 辐射化学基础教程[M]. 北京: 北京大学出版社, 2015: 3.
PENG Jing. Basic course in radiation chemistry[M]. Beijing: Peking University Press, 2015: 3.
Urquidi-Macdonald M, Pitt J, MacDonald D D. The impact of radiolytic yield on the calculated ECP in PWR primary coolant circuits[J]. Journal of Nuclear Materials, 2007, 362(1): 1-13. DOI: 10.1016/j.jnucmat.2006.10.012http://dx.doi.org/10.1016/j.jnucmat.2006.10.012.
Elliot A J, Bartels D M. The reaction set, rate constants and g-values for the simulation of the radiolysis of light water over the range 20 ℃ to 350 ℃based on information available in 2008[R]. Ontario: Atomic Energy of Canada Limited, 2009.
Mozumder A, Hatano Y. Charged particle and photon interactions with matter: chemical, physicochemical, and biological consequences with applications[M]. New York: Marcel Dekker, 2004.
Yamashita S, Katsumura Y, Lin M, et al. Water radiolysis with heavy ions of energies up to 28 GeV: 1. Measurements of primary g values as track segment yields[J]. Radiation Physics and Chemistry, 2008, 77(4): 439-446. DOI: 10.1016/j.radphyschem.2008.05.037http://dx.doi.org/10.1016/j.radphyschem.2008.05.037.
MacDonald D D, Urquidi-Macdonald M. Thin-layer mixed-potential model for the corrosion of high-level nuclear waste canisters[J]. Corrosion, 1990, 46(5): 380-390. DOI: 10.5006/1.3585122http://dx.doi.org/10.5006/1.3585122.
Pham A N, Xing G W, Miller C J, et al. Fenton-like copper redox chemistry revisited: hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production[J]. Journal of Catalysis, 2013, 301: 54-64. DOI: 10.1016/j.jcat.2013.01.025http://dx.doi.org/10.1016/j.jcat.2013.01.025.
Shen J Q, Griffiths P T, Campbell S J, et al. Ascorbate oxidation by iron, copper and reactive oxygen species: review, model development, and derivation of key rate constants[J]. Scientific Reports, 2021, 11(1): 7417. DOI: 10.1038/s41598-021-86477-8http://dx.doi.org/10.1038/s41598-021-86477-8.
Lee H, Lee H J, Seo J, et al. Activation of oxygen and hydrogen peroxide by copper(II) coupled with hydroxylamine for oxidation of organic contaminants[J]. Environmental Science & Technology, 2016, 50(15): 8231-8238. DOI: 10.1021/acs.est.6b02067http://dx.doi.org/10.1021/acs.est.6b02067.
Pham A N, Rose A L, Waite T D. Kinetics of Cu(II) reduction by natural organic matter[J]. The Journal of Physical Chemistry A, 2012, 116(25): 6590-6599. DOI: 10.1021/jp300995hhttp://dx.doi.org/10.1021/jp300995h.
Mulac W A, Meyerstein D. Properties of copper(II) hydride formed in the reaction of aquacopper(I) ions with hydrogen atoms. A pulse radiolytic study[J]. Inorganic Chemistry, 1982, 21(5): 1782-1784. DOI: 10.1021/ic00135a017http://dx.doi.org/10.1021/ic00135a017.
Xing G W, Pham A N, Miller C J, et al. pH-dependence of production of oxidants (Cu(III) and/or HO·) by copper-catalyzed decomposition of hydrogen peroxide under conditions typical of natural saline waters[J]. Geochimica et Cosmochimica Acta, 2018, 232: 30-47. DOI: 10.1016/j.gca.2018.04.016http://dx.doi.org/10.1016/j.gca.2018.04.016.
Deguillaume L, Leriche M, Desboeufs K, et al. Transition metals in atmospheric liquid phases: sources, reactivity, and sensitive parameters[J]. Chemical Reviews, 2005, 105(9): 3388-3431. DOI: 10.1021/cr040649chttp://dx.doi.org/10.1021/cr040649c.
Buxton G V, Greenstock C L, Helman W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O- in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. DOI: 10.1063/1.555805http://dx.doi.org/10.1063/1.555805.
Schwarzenbach R P, Gschwend P M, Imboden D M. Air-organic solvent and air-water partitioning[J]. Environmental Organic Chemistry, 2005, 2: 181-212. DOI: 10.1002/0471649643.ch6http://dx.doi.org/10.1002/0471649643.ch6.
Yakabuskie P A, Joseph J M, Clara Wren J. The effect of interfacial mass transfer on steady-state water radiolysis[J]. Radiation Physics and Chemistry, 2010, 79(7): 777-785. DOI: 10.1016/j.radphyschem.2010.02.001http://dx.doi.org/10.1016/j.radphyschem.2010.02.001.
Fuller E N, Schettler P D, Giddings J C. New method for prediction of binary gas-phase diffusion coefficients[J]. Industrial & Engineering Chemistry, 1966, 58(5): 18-27. DOI: 10.1021/ie50677a007http://dx.doi.org/10.1021/ie50677a007.
Blunden J, Aneja V P, Overton J H. Modeling hydrogen sulfide emissions across the gas—liquid interface of an anaerobic swine waste treatment storage system[J]. Atmospheric Environment, 2008, 42(22): 5602-5611. DOI: 10.1016/j.atmosenv.2008.03.016http://dx.doi.org/10.1016/j.atmosenv.2008.03.016.
Sander R. Compilation of Henry’s law constants (version 4.0) for water as solvent[J]. Atmospheric Chemistry and Physics, 2015, 15(8): 4399-4981. DOI: 10.5194/acp-15-4399-2015http://dx.doi.org/10.5194/acp-15-4399-2015.
付博, 袁希钢, 张会书, 等. 伴有Rayleigh对流的气液传质理论[J]. 化工学报, 2013, 64(S1): 21-25. DOI: 10. 3969/j.issn.0438-1157.2013.z1.003http://dx.doi.org/10.3969/j.issn.0438-1157.2013.z1.003.
FU Bo, YUAN Xigang, ZHANG Huishu, et al. Gas-liquid mass transfer theory accompanied by Rayleigh convection[J]. CIESC Journal, 2013, 64(S1): 21-25. DOI: 10.3969/j.issn.0438-1157.2013.z1.003http://dx.doi.org/10.3969/j.issn.0438-1157.2013.z1.003.
卡尔L, 约斯. Matheson气体数据手册[M]. 陶鹏万, 黄建彬, 朱大方, 译. 北京: 化学工业出版社, 2003: 977-981.
Yaws C L. Matheson gas data book[M]. TAO Pengwan, HUANG Jianbin, ZHU Dafang, Tran. Beijing: Chemical Industry Press, 2003: 977-981.
Sánchez-Ccoyllo O R, Ordoñez-Aquino C G, Muñoz Á G, et al. Modeling study of the particulate matter in Lima with the WRF-chem model: case study of April 2016[J]. International Journal of Applied Engineering Research, 2018, 13(11): 10129-10141. DOI: 10.37622/ijaer/13.11.2018.10129-10141http://dx.doi.org/10.37622/ijaer/13.11.2018.10129-10141.
0
浏览量
15
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构