1.中国核动力研究设计院 成都 610213
2.中国科学技术大学核科学技术学院 合肥 230026
曹骐,男,1985年2月出生,2011年6月于四川大学获硕士学位,目前为中国科学技术大学在读工程博士,于中国核动力设计院从事反应堆水化学、辐射化学、放射化学研究工作,副研究员,E-mail: 404450346@qq.com
林铭章,博士,教授,E-mail: gelin@ustc.edu.cn
扫 描 看 全 文
曹骐, 杜香怡, 郭子方, 等. γ辐照条件下硼-锂-氨型冷却剂的辐射分解行为[J]. 辐射研究与辐射工艺学报, 2023,41(3):030201.
CAO Qi, DU Xiangyi, GUO Zifang, et al. γ-radiolysis of boric acid-lithium hydroxide-ammonia coolant[J]. Journal of Radiation Research and Radiation Processing, 2023,41(3):030201.
曹骐, 杜香怡, 郭子方, 等. γ辐照条件下硼-锂-氨型冷却剂的辐射分解行为[J]. 辐射研究与辐射工艺学报, 2023,41(3):030201. DOI: 10.11889/j.1000-3436.2023-0020.
CAO Qi, DU Xiangyi, GUO Zifang, et al. γ-radiolysis of boric acid-lithium hydroxide-ammonia coolant[J]. Journal of Radiation Research and Radiation Processing, 2023,41(3):030201. DOI: 10.11889/j.1000-3436.2023-0020.
本文探究了γ辐射场下新型冷却剂硼-锂-氨的辐射分解行为,主要考察了不同硼-锂浓度、吸收剂量和吸收剂量率对辐解产物H,2,O,2,、NO,2,-,和NO,3,-,的浓度影响。实验结果表明:在常规的压水堆运行pH范围内(pH,300 ℃,=7.1~7.3),随着硼酸浓度增加,冷却剂体系的H,2,O,2,和NO,2,-,浓度没有明显变化,其中H,2,O,2,的浓度范围在9.28×10,-5,~1.07×10,-4, mol/L之间,NO,2,-,浓度范围为9×10,-6,~1.5×10,-5, mol/L;NO,3,-,浓度相较于前两个产物波动较大,为4×10,-5,~8×10,-5 ,mol/L。随着吸收剂量增加(1~30 kGy),硼-锂-氨体系中的H,2,O,2,和NO,2,-,的平衡浓度增加,分别为1.28×10,-4, mol/L和1.30×10,-5, mol/L,NO,3,-,的浓度未明显变化(4×10,-5,~6×10,-5, mol/L)。在本工作探究的吸收剂量率范围内(1.27~18.86 Gy/min),H,2,O,2,、NO,2,-,和NO,3,-,的浓度均未因吸收剂量率增加而受到显著影响。本工作为新型冷却剂硼-锂-氨体系的实际应用提供了有参考价值的基础数据。
In this study, the γ-radiolysis,of boric acid-lithium hydroxide-ammonia coolant was investigated under different conditions, including boric acid concentration, absorbed dose, and absorbed dose rate. The concentrations of H,2,O,2, NO,2,-, and NO,3,- ,were determined using UV-visible spectroscopy and ion chromatography. With an increase in boric acid concentration, the concentrations of H,2,O,2, and NO,2,-, in the coolant system did not change significantly,within a pH range commonly used in pressurized water reactor operation. Specifically, the concentration of H,2,O,2, varied from 9.28×10,-5, to 1.07×10,-4, mol/L, while that of NO,2,-, changed from 0.9×10,-5, to 1.5×10,-5, mol/L. In contrast, the concentration of NO,3,-, fluctuated significantly, ranging from 4×10,-5, to 8×10,-5 ,mol/L. With an increase in the absorbed dose (1-30 kGy), the equilibrium concentration of H,2,O,2, and NO,2,-, in boric acid-lithium hydroxide-ammonia system increased to 1.28×10,-4, mol/L and 1.30×10,-5, mol/L, respectively. Meanwhile, the concentration of NO,3,-, did not change significantly (4×10,-5, to 6×10,-5, mol/L). The concentrations of the three radiolytic products were not significantly affected within the given absorbed dose rate range (1.27 to 18.86 Gy/min). Overall, this work provides valuable basic data for optimizing the new boric acid-lithium hydroxide-ammonia coolant system.
硼酸氢氧化锂氨冷却剂辐射分解
Boric acidLithium hydroxideAmmoniaCoolantRadiolysis
Song M C, Lee K J. The evaluation of radioactive corrosion product at PWR as change of primary coolant chemistry for long-term fuel cycle[J]. Annals of Nuclear Energy, 2003, 30(12): 1231-1246. DOI: 10.1016/S0306-4549(03)00054-9http://dx.doi.org/10.1016/S0306-4549(03)00054-9.
王凤军, 刘红英, 彭彦龙. 压水堆核电厂一回路水化学控制[J]. 硅谷, 2011(2): 415-421. DOI: 10.3969/j.issn. 1671-7597.2011.02.028http://dx.doi.org/10.3969/j.issn.1671-7597.2011.02.028
WANG Fengjun, LIU Hongying, PENG Yanlong. Chemical control of primary loop water in PWR nuclear power plant[J]. Silicon Valley, 2011(2): 415-421. DOI: 10.3969/j.issn.1671-7597.2011.02.028http://dx.doi.org/10.3969/j.issn.1671-7597.2011.02.028
Ishigure K, Katsumura Y, Sunaryo G R, et al. Radiolysis of high temperature water[J]. Radiation Physics and Chemistry, 1995, 46(4/5/6): 557-560. DOI: 10.1016/0969-806X(95)00217-Lhttp://dx.doi.org/10.1016/0969-806X(95)00217-L.
Buxton G V. High temperature water radiolysis[J]. Studies in Physical and Theoretical Chemistry, 2001, 87: 145-162. DOI: 10.1016/S0167-6881(01)80009-4http://dx.doi.org/10.1016/S0167-6881(01)80009-4.
Luzakov A V, Bulanov A V, Verkhovskaya A O, et al. Radiation-chemical removal of corrosion hydrogen from VVER first-loop coolant[J]. Atomic Energy, 2008, 105(6): 402-407. DOI: 10.1007/s10512-009-9115-4http://dx.doi.org/10.1007/s10512-009-9115-4.
温菊花, 姜峨, 刘金华, 等. 大型压水堆一回路冷却剂富集10B的硼锂水化学应用[J]. 腐蚀与防护, 2015: 36(增刊2): 208-212.
WEN Juhua, JIANG E, LIU Jinhua, et al. Research of water chemistry of enriched 10B and lithium for primary coolant in PWR[J]. Corrosion & Protection, 2015: 36(Supp.2): 208-212.
Koike M, Tachikawa E, Matsui T. Gamma-radiolysis of aqueous boric acid solution[J]. Journal of Nuclear Science and Technology, 1969, 6(4): 163-169. DOI: 10. 1080/18811248.1969.9732863http://dx.doi.org/10.1080/18811248.1969.9732863.
Hickel B, Sehested K. Reaction of hydroxyl radicals with ammonia in liquid water at elevated temperatures[J]. International Journal of Radiation Applications and Instrumentation Part C Radiation Physics and Chemistry, 1992, 39(4): 355-357. DOI: 10.1016/1359-0197(92)90244-ahttp://dx.doi.org/10.1016/1359-0197(92)90244-a.
Rigg T, Scholes G, Weiss J. Chemical actions of ionising radiations in solutions. Part X. The action of X-rays on ammonia in aqueous solution[J]. Journal of the Chemical Society (Resumed), 1952: 3034. DOI: 10.1039/jr9520003034http://dx.doi.org/10.1039/jr9520003034.
Pagsberg P B. Investigation of the NH2 radical produced by pulse radiolysis of ammonia in aqueous solution[J]. Aspects of Research at Risø, 1972, 5: 209.
Ershov B G, Mikhajlova T L, Gordeev A V, et al. Pulse radiolysis of ammonia aqueous solution in the presence of oxygen[J]. Doklady Akademii nauk SSSR, 1988, 300: 4.
Dwibedy P, Kishore K, Dey G R, et al. Nitrite formation in the radiolysis of aerated aqueous solutions of ammonia[J]. Radiation Physics and Chemistry, 1996, 48(6): 743-747. DOI: 10.1016/S0969-806X(96)00037-0http://dx.doi.org/10.1016/S0969-806X(96)00037-0.
Ibe E, Karasawa H, Nagase M, et al. Behavior of nitrogen compounds in radiation field and nuclear reactor systems[J]. Journal of Nuclear Science and Technology, 1989, 26(8): 760-769. DOI: 10.1080/18811248.1989. 9734380http://dx.doi.org/10.1080/18811248.1989.9734380.
Dey G R. Nitrogen compounds' formation in aqueous solutions under high ionizing radiation: an overview[J]. Radiation Physics and Chemistry, 2011, 80(3): 394-402. DOI: 10.1016/j.radphyschem.2010.10.010http://dx.doi.org/10.1016/j.radphyschem.2010.10.010.
Ghormley J A, Stewart A C. Effects of γ-radiation on Ice1[J]. Journal of the American Chemical Society, 1956, 78(13): 2934-2939. DOI: 10.1021/ja01594a004http://dx.doi.org/10.1021/ja01594a004.
0
浏览量
12
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构