1.广东省核工业地质局辐射环境监测中心 广州 510800
2.广东核力工程勘察院 广州 510800
3.东华理工大学核科学与工程学院 南昌 330013
毕明亮,男,1989年出生,2016年毕业于兰州大学放射化学专业,硕士研究生,主要从事辐射环境监测与化学分析,工程师
扫 描 看 全 文
毕明亮, 廖深, 李小燕. 典型伴生矿废渣中钍元素含量测定方法优化[J]. 辐射研究与辐射工艺学报, 2023,41(4):040701.
BI Mingliang, LIAO Shen, LI Xiaoyan. Optimization of thorium content determination method in typical associated ore waste residue[J]. Journal of Radiation Research and Radiation Processing, 2023,41(4):040701.
毕明亮, 廖深, 李小燕. 典型伴生矿废渣中钍元素含量测定方法优化[J]. 辐射研究与辐射工艺学报, 2023,41(4):040701. DOI: 10.11889/j.1000-3436.2023-0024.
BI Mingliang, LIAO Shen, LI Xiaoyan. Optimization of thorium content determination method in typical associated ore waste residue[J]. Journal of Radiation Research and Radiation Processing, 2023,41(4):040701. DOI: 10.11889/j.1000-3436.2023-0024.
以6种典型伴生矿废渣样品为研究对象,通过分光光度法测定样品中钍含量,分析影响测试结果的因素。选出3个可能显著影响结果准确度的因素,利用控制变量法对实验条件进行优化,再通过电感耦合等离子体质谱法和γ能谱法对结果进行对比,以此证明本优化方法的可靠性。结果表明:影响结果准确度的主要因素为消解次数、比色时间、样品残留萃取剂,分别通过增加消解次数至3次、保证比色时间为3~5 min、加入双氧水和高氯酸消解去除萃取剂来优化方法,提高了6种典型伴生矿废渣中钍的检测准确度和检测效率。
Taking six typical associated ore waste samples as the research object, the thorium content in the samples was determined by spectrophotometry and the factors affecting the test results were analyzed. Three factors that may obviously affect the accuracy of the results were selected and optimized the experimental conditions by controlling variates, and the results were compared with inductively coupled plasma mass spectrometry and gamma spectrometry to prove the reliability of the optimization method. The results showed that the main affecting factors in the sample were the digestion frequency, colorimetric time, and residual extractant. The detection accuracy and efficiency of thorium in the six typical associated ore residues were improved by increasing the digestion frequency to 3 times, ensuring a colorimetric time of 3 min to 5 min, and adding hydrogen peroxide and perchloric acid to remove the extractant.
钍典型伴生矿分光光度法方法比对
ThoriumTypical associated oreSpectrophotometryComparative experiment
武宝利, 战景明, 杨凯, 等. 铀的分析方法研究进展[J]. 冶金分析, 2021, 41(1): 47-54. DOI: 10.13228/j.boyuan.issn1000-7571.011121http://dx.doi.org/10.13228/j.boyuan.issn1000-7571.011121.
WU Baoli, ZHAN Jingming, YANG Kai, et al. Research progress in analytical methods of uranium[J]. Metallurgical Analysis, 2021, 41(1): 47-54. DOI: 10. 13228/j.boyuan.issn1000-7571.011121http://dx.doi.org/10.13228/j.boyuan.issn1000-7571.011121.
冯奕达, 张保生. 伴生矿开发利用对环境的放射性影响及污染防治措施[J]. 环境与发展, 2018, 30(5): 76-77, 85. DOI: 10.16647/j.cnki.cn15-1369/X.2018.05.046http://dx.doi.org/10.16647/j.cnki.cn15-1369/X.2018.05.046.
FENG Yida, ZHANG Baosheng. The associated ore development and utilization of environmental radiation and pollution prevention and control measures[J]. Environment and Development, 2018, 30(5): 76-77, 85. DOI: 10.16647/j.cnki.cn15-1369/X.2018.05.046http://dx.doi.org/10.16647/j.cnki.cn15-1369/X.2018.05.046.
初旭阳, 胡鹏华, 杨明理, 等. 北方某露天铀伴生矿辐射防护实践和剂量估算[J]. 铀矿冶, 2023, 42(1): 73-79. DOI: 10.13426/j.cnki.yky.2022.06.01http://dx.doi.org/10.13426/j.cnki.yky.2022.06.01.
CHU Xuyang, HU Penghua, YANG Mingli, et al. Radiation protection practice and dose estimation of an open-pit uranium associated ore in Northern China[J]. Uranium Mining and Metallurgy, 2023, 42(1): 73-79. DOI: 10.13426/j.cnki.yky.2022.06.01http://dx.doi.org/10.13426/j.cnki.yky.2022.06.01.
陈志东, 陈柏迪, 邓飞, 等. 锆英砂类型伴生矿固体废物中核素与重金属释出的浸泡淋滤实验研究[J]. 核技术, 2021, 44(3): 030504. DOI: 10.11889/j.0253-3219.2021.hjs. 44.030504http://dx.doi.org/10.11889/j.0253-3219.2021.hjs.44.030504.
CHEN Zhidong, CHEN Baidi, DENG Fei, et al. Soaking and leaching experimental study on nuclides and heavy metals from zircon sand type associated radioactivity solid wastes[J]. Nuclear Techniques, 2021, 44(3): 030504. DOI: 10.11889/j.0253-3219.2021.hjs.44.030504http://dx.doi.org/10.11889/j.0253-3219.2021.hjs.44.030504.
骆枫, 冉洺东, 王力, 等. 放射性废水来源及其处理方法概述与评价[J]. 四川环境, 2019, 38(2): 108-114. DOI: 10.14034/j.cnki.schj.2019.02.019http://dx.doi.org/10.14034/j.cnki.schj.2019.02.019.
LUO Feng, RAN Mingdong, WANG Li, et al. Overview and evaluation of the source and treatment techniques of radioactive wastewater[J]. Sichuan Environment, 2019, 38(2): 108-114. DOI: 10.14034/j.cnki.schj.2019.02.019http://dx.doi.org/10.14034/j.cnki.schj.2019.02.019.
中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中放射性物质天然钍和铀的测定: GB 14883.7—2016[S]. 北京: 中国标准出版社, 2017.
National Health and Family Planning Commission of the People's Republic of China. National standard for food safety—determination of natural thorium and uranium as radioactive substances in foods: GB 14883.7—2016 [S]. Bei jing: China standard press, 2017.
Verma P K, Pathak P, Bhattacharyya A, et al. The role of residual charges in the interaction between NpO2+ and Th4+ cations: spectrophotometric and computational studies[J]. European Journal of Inorganic Chemistry, 2014, 2014(22): 3547-3554. DOI: 10.1002/ejic. 201402211http://dx.doi.org/10.1002/ejic.201402211.
Kuś S, Obarski N, Marczenko Z. Determination of thorium, uranium and zirconium with arsenazo III using third-order derivative spectrophotometry[J]. Analytical Sciences, 1992, 8(2): 213-218. DOI: 10.2116/analsci. 8.213http://dx.doi.org/10.2116/analsci.8.213.
Olanya A, Okello D, Oruru B, et al. The primordial radionuclides activity concentrations and associated minerals in rocks from selected Quarries in northern Uganda[J]. International Journal of Sciences: Basic and Applied Research (IJSBAR), 2022, 66(1): 45-65.
Tuovinen H, Vesterbacka D, Pohjolainen E, et al. A comparison of analytical methods for determining uranium and thorium in ores and mill tailings[J]. Journal of Geochemical Exploration, 2015, 148: 174-180. DOI: 10.1016/j.gexplo.2014.09.004http://dx.doi.org/10.1016/j.gexplo.2014.09.004.
谢添, 朱君, 石云峰, 等. 铀矿尾矿中U、Th和226Ra浸出特性研究[J]. 核电子学与探测技术, 2020, 40(3): 493-499. 10.3969/j.issn.0258-0934.2020.03.023http://dx.doi.org/10.3969/j.issn.0258-0934.2020.03.023
XIE Tian, ZHU Jun, SHI Yunfeng, et al. Leaching characteristics of U, Th, 226Ra from uranium tailings[J]. Nuclear Electronics & Detection Technology, 2020, 40(3): 493-499. 10.3969/j.issn.0258-0934.2020.03.023http://dx.doi.org/10.3969/j.issn.0258-0934.2020.03.023
侯晓志, 杨占峰. 典型稀土精矿及废渣中清洁提钍工艺研究进展[J]. 中国稀土学报, 2019, 37(2): 154-167. DOI: 10.11785/S1000-4343.20190203http://dx.doi.org/10.11785/S1000-4343.20190203.
HOU Xiaozhi, YANG Zhanfeng. Research progress in clean extraction technology of thorium from typical rare earth concentrate and waste slag[J]. Journal of the Chinese Society of Rare Earths, 2019, 37(2): 154-167. DOI: 10.11785/S1000-4343.20190203http://dx.doi.org/10.11785/S1000-4343.20190203.
周健, 胡建伟, 徐萍, 等. 三辛烷叔胺萃取分光光度法测定水中钍[J]. 环境监测管理与技术, 2019, 31(1): 51-53. DOI: 10.19501/j.cnki.1006-2009.20190109.001http://dx.doi.org/10.19501/j.cnki.1006-2009.20190109.001.
ZHOU Jian, HU Jianwei, XU Ping, et al. Study on the determination of thorium in water by trioctyl tertiary amine extraction spectrophotometry[J]. The Administration and Technique of Environmental Monitoring, 2019, 31(1): 51-53. DOI: 10.19501/j.cnki. 1006-2009.20190109.001http://dx.doi.org/10.19501/j.cnki.1006-2009.20190109.001.
高艳辉. 食品中天然铀、钍的三正辛胺萃取—分光光度法联合测定研究[D]. 北京: 中国协和医科大学, 2010.
GAO Yanhui. Study on combined determination of natural uranium and thorium in food by tri-n-octylamine extraction-spectrophotometry[D].Beijing: Peking Union Medical College, 2010.
徐千惠, 朱铁建, 郑海洋, 等. ThF4-LiCl-KCl熔盐体系中F-浓度对Th(Ⅳ)电解提取的影响[J]. 辐射研究与辐射工艺学报, 2018, 36(3): 030301. DOI: 10.11889/j.1000-3436. 2018.rrj.36.030301http://dx.doi.org/10.11889/j.1000-3436.2018.rrj.36.030301.
XU Qianhui, ZHU Tiejian, ZHENG Haiyang, et al. Effect of F- concentration on the electrolysis of Th(Ⅳ) in ThF4-LiCl-KCl molten salt[J]. Journal of Radiation Research and Radiation Processing, 2018, 36(3): 030301. DOI: 10. 11889/j.1000-3436.2018.rrj.36.030301http://dx.doi.org/10.11889/j.1000-3436.2018.rrj.36.030301.
徐鸿志, 陈志伟, 刘东武, 等. 电感耦合等离子体质谱法测定矿物渣中微量铀和钍[J]. 理化检验-化学分册, 2008, 44(10): 911-912. 10.3321/j.issn:1001-4020.2008.10.001http://dx.doi.org/10.3321/j.issn:1001-4020.2008.10.001
XU Hongzhi, CHEN Zhiwei, LIU Dongwu, et al. ICP-MS determination of micro-amounts of uranium and thorium in mineral slags[J]. Physical Testing and Chemical Analysis (Part B (Chemical Analysis)), 2008, 44(10): 911-912. 10.3321/j.issn:1001-4020.2008.10.001http://dx.doi.org/10.3321/j.issn:1001-4020.2008.10.001
何乐龙, 辛文彩, 张剑, 等. 海洋沉积物光释光测年中铀、钍、钾的γ能谱法分析[J]. 海洋地质前沿, 2018, 34(12): 68-76. DOI: 10.16028/j.1009-2722.2018.12009http://dx.doi.org/10.16028/j.1009-2722.2018.12009.
HE Lelong, XIN Wencai, ZHANG Jian, et al. γ-spectrometric determination of U, Th and K for osl dating of marine sediments[J]. Marine Geology Frontiers, 2018, 34(12): 68-76. DOI: 10.16028/j.1009-2722.2018. 12009http://dx.doi.org/10.16028/j.1009-2722.2018.12009.
柏学凯, 孙娟, 连国玺, 等. 伴生放射性矿辐射环境影响评价中钍系关键核素的确定[J]. 铀矿冶, 2019, 38(4): 292-297. DOI: 10.13426/j.cnki.yky.2019.04.012http://dx.doi.org/10.13426/j.cnki.yky.2019.04.012.
BAI Xuekai, SUN Juan, LIAN Guoxi, et al. Identification of the key nuclides of the thorium series in radiation environmental impact assessment of associated radioactive mines[J]. Uranium Mining and Metallurgy, 2019, 38(4): 292-297. DOI: 10.13426/j.cnki.yky.2019. 04.012http://dx.doi.org/10.13426/j.cnki.yky.2019.04.012.
国务院第二次全国污染源普查领导小组办公室. 国污普[2018]1号[Z]. 第二次全国污染源普查伴生放射性矿普查监测技术规定. 2018: 82-87.
Office of the Leading Group for the Second National Pollution Source Survey of the State Council. [2018]No.1[Z]. Technical regulations for general survey and monitoring of associated radioactive minerals in the second national pollution source survey. 2018: 82-87.
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构