1.湖南农业大学食品科学技术学院 长沙 410125
2.湖南省农业科学院湖南省核农学与航天育种研究所 长沙 410125
谢慧,女,1998年1月出生,2020年于湖南农业大学东方科技学院获工学学士学位,现为湖南农业大学生物与医药专业硕士研究生
王克勤,研究员,E-mail: wkq6412@163.com
刘素纯,教授,E-mail: liusuchun@163.com
扫 描 看 全 文
谢慧, 刘安, 陈亮, 等. 辐射诱变贝莱斯芽孢杆菌及其对辣椒炭疽病抑菌效果[J]. 辐射研究与辐射工艺学报, 2023,41(3):030401.
XIE Hui, LIU An, CHEN Liang, et al. Radiation mutagenesis of
谢慧, 刘安, 陈亮, 等. 辐射诱变贝莱斯芽孢杆菌及其对辣椒炭疽病抑菌效果[J]. 辐射研究与辐射工艺学报, 2023,41(3):030401. DOI: 10.11889/j.1000-3436.2023-0029.
XIE Hui, LIU An, CHEN Liang, et al. Radiation mutagenesis of
采用,60,Co-γ射线和电子束辐射诱变贝莱斯芽孢杆菌选育遗传稳定的突变菌株,用平板对峙法及四点法对突变菌株进行初筛和复筛,研究其对辣椒炭疽病菌的抑菌效果。结果表明:菌悬液经,60,Co-γ射线辐照,贝莱斯芽孢杆菌,D,10,值为2 366 Gy,在100~2 000 Gy诱变剂量范围内芽孢杆菌致死率随着辐照吸收剂量的增加而升高。在2 000 Gy辐照吸收剂量下,贝莱斯芽孢杆菌的致死率为81.8%,并筛选出5株(B004、B112、B114、B117、B118)突变菌株,其对辣椒炭疽病菌抑制率由出发菌株的51.2%分别提高到57.5%、58.0%、57.0%、57.7%和59.9%;贝莱斯芽孢杆菌菌悬液经电子束(10 MeV)辐照,贝莱斯芽孢杆菌,D,10,值为499 Gy,在100~600 Gy诱变剂量范围内,芽孢杆菌致死率随着辐照吸收剂量的增加而升高,在400 Gy辐照吸收剂量下,贝莱斯芽孢杆菌致死率为91.8%,筛选出2株(D115和D243)突变菌株,其对辣椒炭疽病菌抑制率由出发菌株的55.2%分别提高到58.4%和58.1%;B004、B112、B117、B118贝莱斯芽孢杆菌诱变菌株对辣椒炭疽病菌抑菌效果在6代内遗传稳定。研究结果表明:γ射线和电子束辐照在贝莱斯芽孢杆菌的诱变育种中具有潜在的应用价值,本研究可为贝莱斯芽孢杆菌的诱变育种提供基础,为辣椒炭疽病病害的生物防治提供理论参考。
We used ,60,Co-γ ray and electron beam irradiation to mutate ,Bacillus velezensis, to breed genetically stable mutant strains. The mutant strains were screened and re-screened by plate confrontation and the four-point method to study their antibacterial effects on ,Colletotrichum gloeosporioides,. The results demonstrated that the ,D,10 ,value of ,Bacillus velezensis, suspension irradiated by ,60,Co-γ ray was 2 366 Gy, and the lethality rate increased with an increase in the irradiation coefficient dose in the range of 100-2 000 Gy. The lethality rate of ,Bacillus velezensis, was 81.8% at 2 000 Gy irradiation coefficient dose, and five mutants (B004, B112, B114, B117, and B118) were screened. The inhibition rate against ,Colletotrichum gloeosporioides, increased from 51.2% of the original strain to 57.5%, 58.0%, 57.0%, 57.7%, and 59.9%, respectively. The ,Bacillus velezensis, suspension was irradiated by an electron beam (10 MeV), the ,D,10, value was 499 Gy, and the lethality rate increased with an increase in the irradiation coefficient dose in the range of 100-600 Gy. The lethality rate of ,Bacillus velezensis, was 91.8% at 400 Gy irradiation coefficient dose. Two mutant strains (D115 and D243) were screened, and their inhibition rates against ,Colletotrichum gloeosporioides, increased from 55.2% of the emitted strains to 58.4 and 58.1%, respectively. The inhibitory effects of B004, B112, B117, and B118 mutants on ,Colletotrichum gloeosporioides, were genetically stable within six generations. In conclusion, γ-ray and electron beam irradiation have potential application value in the mutation breeding of ,Bacillus velezensis,. The results provide a basis for ,Bacillus velezensis, mutation breeding and a theoretical reference for the biological control of ,Colletotrichum gloeosporioides.
贝莱斯芽孢杆菌辣椒炭疽病菌60Co-γ射线辐射诱变电子束辐射诱变抑菌
Bacillus velezensisColletotrichum gloeosporioides60Co-γ ray radiation mutagenesiselectron beam radiation mutagenesisBacteriostasis
陈积红, 胡伟, 李文建. 重离子束辐照在优良工业微生物新菌株创建中的应用实践[J]. 生物产业技术, 2017(1): 46-50. DOI: 10.3969/j.issn.1674-0319.2017.01.007http://dx.doi.org/10.3969/j.issn.1674-0319.2017.01.007.
CHEN Jihong, HU Wei, LI Wenjian. The application of heavy ion irradiations for creating promising new strains of industrial microorganisms[J]. Biotechnology & Business, 2017(1):46-50. DOI: 10.3969/j.issn.1674-0319.2017.01.007http://dx.doi.org/10.3969/j.issn.1674-0319.2017.01.007.
Yolmeh M, Khomeiri M. Effect of mutagenesis treatment on antimicrobial and antioxidant activities of pigments extracted from Rhodotorula glutinis[J]. Biocatalysis and Agricultural Biotechnology, 2017, 10: 285-290. DOI: 10. 1016/j.bcab.2017.04.007http://dx.doi.org/10.1016/j.bcab.2017.04.007.
Koksharova O A, Popova A A, Plyuta V A, et al. Four new genes of cyanobacterium Synechococcus elongatus PCC 7942 are responsible for sensitivity to 2-nonanone[J]. Microorganisms, 2020, 8(8): 1234. DOI: 10.3390/microorganisms8081234http://dx.doi.org/10.3390/microorganisms8081234.
郑婕, 庄远航, 郭梓琪, 等. 南雄辣椒炭疽病菌的分离鉴定与药剂筛选[J]. 中国蔬菜, 2022(10): 58-65. DOI: 10. 19928/j.cnki.1000-6346.2022.5040http://dx.doi.org/10.19928/j.cnki.1000-6346.2022.5040.
ZHENG Jie, ZHUANG Yuanhang, GUO Ziqi, et al. Isolation, identification and pesticide screening of colletotrichum gloeosporioides from Nanxiong pepper[J]. China Vegetables, 2022(10): 58-65. DOI: 10.19928/j.cnki.1000-6346.2022.5040http://dx.doi.org/10.19928/j.cnki.1000-6346.2022.5040.
邹学校, 马艳青, 戴雄泽, 等. 辣椒在中国的传播与产业发展[J]. 园艺学报, 2020, 47(9): 1715-1726. DOI: 10. 16420/j.issn.0513-353x.2020-0103http://dx.doi.org/10.16420/j.issn.0513-353x.2020-0103.
ZOU Xuexiao, MA Yanqing, DAI Xiongze, et al. Spread and industry development of pepper in China[J]. Acta Horticulturae Sinica, 2020, 47(9): 1715-1726. DOI: 10. 16420/j.issn.0513-353x.2020-0103http://dx.doi.org/10.16420/j.issn.0513-353x.2020-0103.
林清, 吕中华, 黄任中, 等. 辣(甜)椒抗TMV、CMV、疫病及炭疽病材料筛选[J]. 西南农业学报, 2005, 18(1): 108-110. DOI: 10.16213/j.cnki.scjas.2005.01.026http://dx.doi.org/10.16213/j.cnki.scjas.2005.01.026.
LIN Qing, LYU Zhonghua, HUANG Renzhong, et al. Screening of pepper germplasm for resistance to TMV, CMV, phytophthora blight and anthracnose[J]. Southwest China Journal of Agricultural Sciences, 2005, 18(1): 108-110. DOI: 10.16213/j.cnki.scjas.2005.01.026http://dx.doi.org/10.16213/j.cnki.scjas.2005.01.026.
杨佳文, 赵尊练, 张管曲, 等. 陕西线辣椒炭疽病原菌的鉴定及生物学特性研究[J]. 西北农业学报, 2017, 26(11): 1695-1705. DOI: 10.7606/j.issn.1004-1389.2017. 11.017http://dx.doi.org/10.7606/j.issn.1004-1389.2017.11.017.
YANG Jiawen, ZHAO Zunlian, ZHANG Guanqu, et al. Identification and biological characterization of anthrax bacteria in xianlajiao chili pepper in Shaanxi Province[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(11): 1695-1705. DOI: 10.7606/j.issn.1004-1389.2017. 11.017http://dx.doi.org/10.7606/j.issn.1004-1389.2017.11.017.
Lamsal K, Kim S W, Kim Y S, et al. Application of rhizobacteria for plant growth promotion effect and biocontrol of anthracnose caused by colletotrichum acutatum on pepper[J]. Mycobiology, 2012, 40(4): 244-251. DOI: 10.5941/MYCO.2012.40.4.244http://dx.doi.org/10.5941/MYCO.2012.40.4.244.
Shin J H, Park B S, Kim H Y, et al. Antagonistic and plant growth-promoting effects of bacillus velezensis BS1 isolated from rhizosphere soil in a pepper field[J]. The Plant Pathology Journal, 2021, 37(3): 307-314. DOI: 10.5423/PPJ.NT.03.2021.0053http://dx.doi.org/10.5423/PPJ.NT.03.2021.0053.
Kim D J, Jeon B J, Han J W, et al. Evaluation of the endophytic nature of Bacillus amyloliquefaciens strain GYL4 and its efficacy in the control of anthracnose[J]. Pest Management Science, 2016, 72(8): 1529-1536. DOI: 10.1002/ps.4181http://dx.doi.org/10.1002/ps.4181.
Wonglom P, Suwannarach N, Lumyong S, et al. Streptomyces angustmyceticus NR8-2 as a potential microorganism for the biological control of leaf spots of Brassica rapa subsp. pekinensis caused by Colletotrichum sp. and Curvularia lunata[J]. Biological Control, 2019, 138: 104046. DOI: 10.1016/j.biocontrol. 2019.104046http://dx.doi.org/10.1016/j.biocontrol.2019.104046.
Thilagam R, Hemalatha N. Plant growth promotion and chilli anthracnose disease suppression ability of rhizosphere soil Actinobacteria[J]. Journal of Applied Microbiology, 2019, 126(6): 1835-1849. DOI: 10.1111/jam.14259http://dx.doi.org/10.1111/jam.14259.
Supong K, Thawai C, Choowong W, et al. Antimicrobial compounds from endophytic Streptomyces sp. BCC72023 isolated from rice (Oryza sativa L.)[J]. Research in Microbiology, 2016, 167(4): 290-298. DOI: 10.1016/j.resmic.2016.01.004http://dx.doi.org/10.1016/j.resmic.2016.01.004.
Intra B, Greule A, Bechthold A, et al. Thailandins A and B, new polyene macrolactone compounds isolated from Actinokineospora bangkokensis strain 44EHW(T), possessing antifungal activity against anthracnose fungi and pathogenic yeasts[J]. Journal of Agricultural and Food Chemistry, 2016, 64(25): 5171-5179. DOI: 10.1021/acs.jafc.6b01119http://dx.doi.org/10.1021/acs.jafc.6b01119.
Naziya B, Murali M, Amruthesh K N. Plant growth-promoting fungi (PGPF) instigate plant growth and induce disease resistance in Capsicum annuum L. upon infection with Colletotrichum capsici (syd.) butler & bisby[J]. Biomolecules, 2019, 10(1): 41. DOI: 10.3390/biom10010041http://dx.doi.org/10.3390/biom10010041.
Yadav M, Dubey M K, Upadhyay R S. Systemic resistance in chilli pepper against anthracnose (caused by Colletotrichum truncatum) induced by Trichoderma harzianum, Trichoderma asperellum and Paenibacillus dendritiformis[J]. Journal of Fungi, 2021, 7(4): 307. DOI: 10.3390/jof7040307http://dx.doi.org/10.3390/jof7040307.
张德锋, 高艳侠, 王亚军, 等. 贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展[J]. 微生物学通报, 2020, 47(11): 3634-3649. DOI: 10.13344/j.microbiol.china. 190947http://dx.doi.org/10.13344/j.microbiol.china.190947.
ZHANG Defeng, GAO Yanxia, WANG Yajun, et al. Advances in taxonomy, antagonistic function and application of Bacillus velezensis[J]. Microbiology China, 2020, 47(11): 3634-3649. DOI: 10.13344/j.microbiol.china.190947http://dx.doi.org/10.13344/j.microbiol.china.190947.
刘霞, 陆喆晓, 马紫程, 等.贝莱斯芽孢杆菌Bv-303对水稻白叶枯病菌的拮抗活性及其应用[J].生物工程学报, 2023, 39(2): 741-754. DOI: 10.13345/j.cjb.220412http://dx.doi.org/10.13345/j.cjb.220412.
LIU Xia, LU Zhexiao, MA Zicheng, et al. Antagonistic activity and application of Bacillus velezensis strain Bv-303 against rice bacterial-blight disease caused by Xanthomonas oryzae pv. oryzae[J]. Chinese Journal of Biotechnology, 2023, 39(2): 741-754. DOI: 10.13345/j.cjb.220412http://dx.doi.org/10.13345/j.cjb.220412.
杨海宁, 宁豫昌, 王昌毓, 等. 接种贝莱斯芽孢杆菌SW5菌株对发酵鳀鱼鱼露品质的影响[J]. 核农学报, 2019, 33(10): 2013-2022. DOI: 10.11869/j.issn.100-8551. 2019.10.2013http://dx.doi.org/10.11869/j.issn.100-8551.2019.10.2013.
YANG Haining, NING Yuchang, WANG Changyu, et al. Effects of inoculated fermentation on characters of anchovy fish sauce by Bacillus velezensis SW5[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(10): 2013-2022. DOI: 10.11869/j.issn.100-8551.2019.10.2013http://dx.doi.org/10.11869/j.issn.100-8551.2019.10.2013.
中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品微生物学检验 菌落总数测定: GB 4789.2—2016[S]. 北京: 中国标准出版社, 2017. 10.12173/j.issn.1004-5511.202301016http://dx.doi.org/10.12173/j.issn.1004-5511.202301016
National Health and Family Planning Commission of the People's Republic of China, State Administration for Food and Drug Administration.National food safety standard Food microbiological examination Determination of total number of colonies:GB 4789.2—2016[S]. Beijing: China Standards Press, 2017. 10.12173/j.issn.1004-5511.202301016http://dx.doi.org/10.12173/j.issn.1004-5511.202301016
邹立飞, 侯宪文, 李光义, 等. 一株甜瓜枯萎病病原拮抗菌的筛选与防治效果初报[J]. 广东农业科学, 2013, 40(1): 72-75. DOI: 10.16768/j.issn.1004-874x.2013.01.039http://dx.doi.org/10.16768/j.issn.1004-874x.2013.01.039.
ZOU Lifei, HOU Xianwen, LI Guangyi, et al. Screening of a strain of antagonistic bacteria against muskmelon Fusarium wilt and a preliminary report of the control effect[J]. Guangdong Agricultural Sciences, 2013, 40(1): 72-75. DOI: 10.16768/j.issn.1004-874x.2013.01.039http://dx.doi.org/10.16768/j.issn.1004-874x.2013.01.039.
崔文会, 炊春萌, 孙雪, 等. 贝莱斯芽孢杆菌对果蔬土传病害的抑菌效果研究[J]. 工业微生物, 2020, 50(5): 15-20. DOI: 10.3969/j.issn.1001-6678.2020.05.003http://dx.doi.org/10.3969/j.issn.1001-6678.2020.05.003.
CUI Wenhui, CHUI Chunmeng, SUN Xue, et al. Bacteriostatic effects of Bacillus velezensis on soil borne diseases of fruits and vegetables[J]. Industrial Microbiology, 2020, 50(5): 15-20. DOI: 10.3969/j.issn. 1001-6678.2020.05.003http://dx.doi.org/10.3969/j.issn.1001-6678.2020.05.003.
孟兆丽. 枯草芽孢杆菌HS-A38高产抗菌肽突变株筛选及抑菌机理的研究[D]. 大连: 大连工业大学, 2018.
MENG Zhaoli. Screening of high yield antibacterial peptides mutants from Bacillus subtilis HS-A38 and action mechanism of antibacterial peptides[D]. Dalian: Dalian Polytechnic University, 2018.
阮思煜. 超声辅助适应性进化诱变体系构建及其在高产多肽芽孢杆菌选育中应用研究[D]. 镇江: 江苏大学, 2021. DOI: 10.27170/d.cnki.gjsuu.2021.000071http://dx.doi.org/10.27170/d.cnki.gjsuu.2021.000071.
RUAN Siyu. Construction of ultrasound-assisted adaptive evolution mutation system and its application in the breeding of high-yield peptides producing bacillus[D]. Zhenjiang: Jiangsu University, 2021.
马艺萌. 枯草芽孢杆菌诱变株mutHS-407的筛选及所产活性物质的纯化和应用[D]. 大连: 大连工业大学, 2019. DOI: 10.26992/d.cnki.gdlqc.2019.000142http://dx.doi.org/10.26992/d.cnki.gdlqc.2019.000142.
MA Yimeng. Screening of mutant strain mutHS-407 from Bacillus subtilis and purification and application of active substances produced[D]. Dalian: Dalian Polytechnic University, 2019. DOI: 10.26992/d.cnki.gdlqc.2019. 000142http://dx.doi.org/10.26992/d.cnki.gdlqc.2019.000142.
曹晓梅. 阿维菌素高产菌株的定向选育[D]. 无锡: 江南大学, 2018.
CAO Xiaomei. Directive breeding of avermectin-high-producing strains[D]. Wuxi: Jiangnan University, 2018.
李芹, 周礼红, 钱仕元, 等. 抗真菌抗生素产生菌UEZC的60Co-γ射线诱变育种[J]. 贵州农业科学, 2009, 37(3): 55-57. DOI: 10.3969/j.issn.1001-3601.2009.03.019http://dx.doi.org/10.3969/j.issn.1001-3601.2009.03.019.
LI Qin, ZHOU Lihong, QIAN Shiyuan, et al. The mutation breeding of the antifungal antibiotics producing strain UEZC by the treatment of 60Co-γ ray[J]. Guizhou Agricultural Sciences, 2009, 37(3): 55-57. DOI: 10.3969/j.issn.1001-3601.2009.03.019http://dx.doi.org/10.3969/j.issn.1001-3601.2009.03.019.
Wang Y X, Wang J, Zhang X, et al. Genomic and transcriptomic analysis of Bacillus subtilis JNFE1126 with higher nattokinase production through ultraviolet combined 60Co-γ ray mutagenesis[J]. LWT, 2021, 147: 111652. DOI: 10.1016/j.lwt.2021.111652http://dx.doi.org/10.1016/j.lwt.2021.111652.
罗水忠, 齐路路, 潘利华, 等. 降解亚硝酸盐肠膜明串珠菌的60Co γ射线诱变选育[J]. 安徽农业科学, 2014, 42(35): 12670-12672. DOI: 10.13989/j.cnki.0517-6611. 2014.35.148http://dx.doi.org/10.13989/j.cnki.0517-6611.2014.35.148.
LUO Shuizhong, QI Lulu, PAN Lihua, et al. Mutagenesis and screening of Leuconostoc mesenteroides with enhanced nitrite degradation capability by treatment of 60Co γ ray[J]. Journal of Anhui Agricultural Sciences, 2014, 42(35): 12670-12672. DOI: 10.13989/j.cnki.0517-6611.2014.35.148http://dx.doi.org/10.13989/j.cnki.0517-6611.2014.35.148.
崔敬爱, 邵智韬, 戴碧玮, 等. 电子束辐照诱变黑曲霉突变菌株对米酒风味的影响[J]. 中国酿造, 2019, 38(3): 65-69. DOI: 10.11882/j.issn.0254-5071.2019.03.013http://dx.doi.org/10.11882/j.issn.0254-5071.2019.03.013.
CUI Jing'ai, SHAO Zhitao, DAI Biwei, et al. Effects of Aspergillus niger mutant irradiated by electron beam on the flavor of rice wine[J]. China Brewing, 2019, 38(3): 65-69. DOI: 10.11882/j.issn.0254-5071.2019.03.013http://dx.doi.org/10.11882/j.issn.0254-5071.2019.03.013.
韩晶晶, 吕江涛, 张琴, 等. 高能脉冲电子束诱变筛选高产酒精酵母及其发酵条件优化[J]. 辐射研究与辐射工艺学报, 2011, 29(3): 154-158.
HAN Jingjing, LYU Jiangtao, ZHANG Qin, et al. Mutation and screening of high-alcoholic-yield yeast by HEPE and optimization of the fermentation condition[J]. Journal of Radiation Research and Radiation Processing, 2011, 29(3): 154-158.
付玉洁, 吕江涛, 王言, 等. 高能脉冲电子束诱变筛选丙酮丁醇梭菌及发酵研究[J]. 辐射研究与辐射工艺学报, 2011, 29(5): 297-301.
FU Yujie, LYU Jiangtao, WANG Yan, et al. Mutagenesis of Clostridium acetobutylicum by HEPE and research of the fermentation[J]. Journal of Radiation Research and Radiation Processing, 2011, 29(5): 297-301.
徐岩. 高产γ-淀粉酶黑曲霉菌株的电子束诱变育种及其产酶糖化力研究[D]. 长春: 吉林农业大学, 2019. DOI: 10.27163/d.cnki.gjlnu.2019.000303http://dx.doi.org/10.27163/d.cnki.gjlnu.2019.000303.
XU Yan. Electron beam mutagenesis breeding of high γ-amylase yield Aspergillus niger strain and its enzyme saccharifying power[D]. Changchun: Jilin Agricultural University, 2019. DOI: 10.27163/d.cnki.gjlnu.2019. 000303http://dx.doi.org/10.27163/d.cnki.gjlnu.2019.000303.
李国光, 田瑞华, 赵磊, 等. 辣椒炭疽病病原菌生物学特性及其拮抗菌防效研究[J]. 农产品加工, 2018(7): 11-15. DOI: 10.16693/j.cnki.1671-9646(X).2018.04.004http://dx.doi.org/10.16693/j.cnki.1671-9646(X).2018.04.004.
LI Guoguang, TIAN Ruihua, ZHAO Lei, et al. Biological characteristics of pepper anthracnose pathogens and their antagonistic bacteria biocontrol effects[J]. Farm Products Processing, 2018(7): 11-15. DOI: 10.16693/j.cnki.1671-9646(X).2018.04.004http://dx.doi.org/10.16693/j.cnki.1671-9646(X).2018.04.004.
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构