1.精准智能化学重点实验室 中国科学技术大学高分子科学与工程系 合肥 230026
李搏,男,1995年4月出生,2018年6月于安徽大学获学士学位,目前为中国科学技术大学在读硕士研究生,材料加工工程专业
汪谟贞,博士,副教授,E-mail: pstwmz@ustc.edu.cn
葛学武,教授,E-mail: xwge@ustc.edu.cn
扫 描 看 全 文
李搏, 沈翔宇, 孙锐, 等. 丙烯腈/马来酸共聚物膜的辐射法制备与性能[J]. 辐射研究与辐射工艺学报, 2023,41(5):050201.
LI Bo, SHEN Xiangyu, SUN Rui, et al. Preparation of acrylonitrile/maleic acid copolymer membranes using a radiation method and their properties[J]. Journal of Radiation Research and Radiation Processing, 2023,41(5):050201.
李搏, 沈翔宇, 孙锐, 等. 丙烯腈/马来酸共聚物膜的辐射法制备与性能[J]. 辐射研究与辐射工艺学报, 2023,41(5):050201. DOI: 10.11889/j.1000-3436.2023-0041.
LI Bo, SHEN Xiangyu, SUN Rui, et al. Preparation of acrylonitrile/maleic acid copolymer membranes using a radiation method and their properties[J]. Journal of Radiation Research and Radiation Processing, 2023,41(5):050201. DOI: 10.11889/j.1000-3436.2023-0041.
丙烯腈(AN)与亲水性单体共聚是制备抗污性高分子材料的研究方向之一。本研究以丙烯腈为主单体,马来酸(MA)为共聚单体,二甲亚砜(DMSO)水溶液为溶剂,采用,60,Co γ-射线辐射引发AN/MA沉淀共聚反应合成AN/MA共聚物(P(AN-co-MA)),进一步采用相转化法,制备P(AN-co-MA)共聚物膜。研究了溶剂对单体转化率和共聚物分子量的影响,以及膜的孔隙率、亲水性、Zeta电势和抗污性能随马来酸酐(MAH)投料比的增加而发生的变化。结果表明:当以质量比为3∶2的DMSO/H,2,O混合体系为溶剂时,单体转化率达到80%以上,所得共聚物的分子量接近22万。随着MAH投料比从0%增加至30%(物质的量),共聚物的分子量逐渐减小,膜表面的孔隙率由17.2%增至25.1%,水接触角从50.8°减小到25.5°,Zeta电势由-11.8 mV降低至-22.7 mV。MAH物质的量投料比为30%的共聚物膜对牛血清白蛋白(BSA)的吸附量只有PAN均聚物膜的52.1%。本工作为利用辐射技术制备结构性能可调的聚丙烯腈基抗污染膜提供了有用的参考。
Copolymerization of acrylonitrile (AN) with hydrophilic monomers is one of the research directions in the preparation of fouling-resistant polymeric materials. In this study, poly(acrylonitrile-co-maleic acid) copolymer (P(AN-co-MA)) membranes were prepared by ,60,Co γ-ray-induced copolymerization of AN and MA in a dimethyl sulfoxide (DMSO)/water mixed solvent. A phase inversion method was then applied. The effects of the solvent on the monomer conversion and molecular weight of the copolymer were investigated. The dependence of porosity, hydrophilicity, Zeta potential, and anti-fouling properties of the copolymer membranes on the molar feed ratio of maleic anhydride (MAH) was also studied. The results showed that in the DMSO/water mixed solvent under a mass ratio of 3∶2, the monomer conversion rate could reach over 80%, and the molecular weight of the obtained copolymer was close to 220 000. The porosity and hydrophilicity of the copolymer membrane increased with an increase in the molar feed ratio of MAH. The adsorption capacity of the copolymer membrane under a molar feed ratio of MAH of 30% for bovine serum albumin was only 52.1% of that of the polyacrylonitrile (PAN) homopolymer membrane. This study provides a useful reference for preparing PAN-based anti-fouling membranes with a controllable structure and properties using a radiation technique.
丙烯腈马来酸辐射共聚聚丙烯腈基亲水膜抗污性能
AcrylonitrileMaleic acidRadiation-induced copolymerizationPAN-based hydrophilic membraneAnti-fouling
Nie F Q, Xu Z K, Wan L S, et al. Acrylonitrile-based copolymers containing reactive groups: synthesis and preparation of ultrafiltration membranes[J]. Journal of Membrane Science, 2004, 230(1/2): 1-11. DOI: 10.1016/j.memsci.2003.10.016http://dx.doi.org/10.1016/j.memsci.2003.10.016.
叶鹏. 丙烯腈/马来酸共聚物膜与脂肪酶的固定化[D]. 杭州: 浙江大学, 2006. 10.1016/j.biomaterials.2005.04.019http://dx.doi.org/10.1016/j.biomaterials.2005.04.019
YE Peng. Immobilization of lipase on acrylonitrile/maleic acid copolymer membrane[D].Hangzhou: Zhejiang University, 2006. 10.1016/j.biomaterials.2005.04.019http://dx.doi.org/10.1016/j.biomaterials.2005.04.019
魏秀珍, 李光胜, 聂井姣, 等. 紫外键联马来酸酐表面改性聚丙烯腈超滤膜[J]. 化工进展, 2014, 33(5): 1236-1241. 10.3969/j.issn.1000-6613.2014.05.026http://dx.doi.org/10.3969/j.issn.1000-6613.2014.05.026
WEI Xiuzhen, LI Guangsheng, NIE Jingjiao, et al. Modification of polyacrylonitrile ultrafiltration membrane surface with maleic anhydride by ultraviolet-initiated bonding[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1236-1241. 10.3969/j.issn.1000-6613.2014.05.026http://dx.doi.org/10.3969/j.issn.1000-6613.2014.05.026
聂富强. 丙烯腈/马来酸共聚物分离膜的制备及表面改性[D]. 杭州: 浙江大学, 2004. 10.1016/j.memsci.2004.02.006http://dx.doi.org/10.1016/j.memsci.2004.02.006
NIE Fuqiang. Preparation and surface modification of acrylonitrile/maleic acid copolymer separation membrane[D]. Hangzhou: Zhejiang University, 2004. 10.1016/j.memsci.2004.02.006http://dx.doi.org/10.1016/j.memsci.2004.02.006
Nie F Q, Xu Z K, Ye P, et al. Acrylonitrile-based copolymer membranes containing reactive groups: effects of surface-immobilized poly(ethylene glycol)s on anti-fouling properties and blood compatibility[J]. Polymer, 2004, 45(2): 399-407. DOI: 10.1016/j.polymer.2003. 11.007http://dx.doi.org/10.1016/j.polymer.2003.11.007.
Nie F Q, Xu Z K, Huang X J, et al. Acrylonitrile-based copolymer membranes containing reactive groups: surface modification by the immobilization of poly(ethylene glycol) for improving antifouling property and biocompatibility[J]. Langmuir, 2003, 19(23): 9889-9895. DOI: 10.1021/la035315hhttp://dx.doi.org/10.1021/la035315h.
Abd El-Rehim H A, Mostafa T B, Bashindy A E M. Radiation synthesis and characterization of maleic anhydride/acrylic acid copolymers and their heterocyclic compound derivatives for possible uses as antibacterial agents[J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2005, 42(7): 853-867. DOI: 10.1081/ma-200063124http://dx.doi.org/10.1081/ma-200063124.
Pal D, Neogi S, De S. Improved antifouling characteristics of acrylonitrile co-polymer membrane by low temperature pulsed ammonia plasma in the treatment of oil-water emulsion[J]. Vacuum, 2016, 131: 293-304. DOI: 10.1016/j.vacuum.2016.07.010http://dx.doi.org/10.1016/j.vacuum.2016.07.010.
Beril Melbiah J S, Kaleekkal N J, Nithya Rabekkal D, et al. Improved permeation, separation and antifouling performance of customized polyacrylonitrile ultrafiltration membranes[J]. Chemical Engineering Research and Design, 2020, 159: 157-169. DOI: 10.1016/j.cherd.2020.04.014http://dx.doi.org/10.1016/j.cherd.2020.04.014.
Zhao X T, Su Y L, Chen W J, et al. Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property[J]. Journal of Membrane Science, 2012, 415/416: 824-834. DOI: 10.1016/j.memsci.2012.05.075http://dx.doi.org/10.1016/j.memsci.2012.05.075.
吴畅, 于跃, 张辰, 等. 抗污染性P(AN-co-4-VP)超滤膜的制备及性能[J]. 大连工业大学学报, 2020, 39(3): 203-207. DOI: 10.19670/j.cnki.dlgydxxb.2020.0310http://dx.doi.org/10.19670/j.cnki.dlgydxxb.2020.0310.
WU Chang, YU Yue, ZHANG Chen, et al. Preparation and properties of antifouling P(AN-co-4-VP) ultrafiltration membranes[J]. Journal of Dalian Polytechnic University, 2020, 39(3): 203-207. DOI: 10. 19670/j.cnki.dlgydxxb.2020.0310http://dx.doi.org/10.19670/j.cnki.dlgydxxb.2020.0310.
Wang H T, Yang L, Zhao X H, et al. Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by blending sulfonated polyethersulfone[J]. Chinese Journal of Chemical Engineering, 2009, 17(2): 324-329. DOI: 10.1016/S1004-9541(08)60211-6http://dx.doi.org/10.1016/S1004-9541(08)60211-6.
Fang L F, Yang H Y, Cheng L A, et al. Effect of molecular weight of sulfonated poly(ether sulfone) (spes) on the mechanical strength and antifouling properties of poly(ether sulfone)/SPES blend membranes[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 11302-11311. DOI: 10.1021/acs.iecr.7b02996http://dx.doi.org/10.1021/acs.iecr.7b02996.
陈志军, 黄年华, 柳浩. 聚丙烯腈纤维接枝丙烯酰胺亲水改性的研究[J]. 武汉纺织大学学报, 2013, 26(6): 32-36. 10.3969/j.issn.2095-414X.2013.06.008http://dx.doi.org/10.3969/j.issn.2095-414X.2013.06.008
CHEN Zhijun, HUANG Nianhua, LIU Hao. The hydrophilic properties of polyacrylonitrile fiber modified with acrylamide[J]. Journal of Wuhan Textile University, 2013, 26(6): 32-36. 10.3969/j.issn.2095-414X.2013.06.008http://dx.doi.org/10.3969/j.issn.2095-414X.2013.06.008
Meng H, Cheng Q, Li C X. Polyacrylonitrile-based zwitterionic ultrafiltration membrane with improved anti-protein-fouling capacity[J]. Applied Surface Science, 2014, 303: 399-405. DOI: 10.1016/j.apsusc.2014.03.015http://dx.doi.org/10.1016/j.apsusc.2014.03.015.
Han N, Zhang X X, Yu W Y, et al. Effects of copolymerization temperatures on structure and properties of melt-spinnable acrylonitrile-methyl acrylate copolymers and fibers[J]. Macromolecular Research, 2010, 18(11): 1060-1069. DOI: 10.1007/s13233-010-1115-7http://dx.doi.org/10.1007/s13233-010-1115-7.
Tan L L, Han N, Qian Y Q, et al. Superhydrophilic and underwater superoleophobic poly (acrylonitrile-co-methyl acrylate) membrane for highly efficient separation of oil-in-water emulsions[J]. Journal of Membrane Science, 2018, 564: 712-721. DOI: 10.1016/j.memsci. 2018.06.051http://dx.doi.org/10.1016/j.memsci.2018.06.051.
李燕芬, 刘元法, 郭静, 等. 聚丙烯腈超滤膜的亲水改性及抗污染性能[J]. 大连工业大学学报, 2020, 39(6): 449-454. DOI: 10.19670/j.cnki.dlgydxxb.2020.0612http://dx.doi.org/10.19670/j.cnki.dlgydxxb.2020.0612.
LI Yanfen, LIU Yuanfa, GUO Jing, et al. Antifouling properties of PAN ultrafiltration membrane after hydrophilic modification[J]. Journal of Dalian Polytechnic University, 2020, 39(6): 449-454. DOI: 10. 19670/j.cnki.dlgydxxb.2020.0612http://dx.doi.org/10.19670/j.cnki.dlgydxxb.2020.0612.
陈文静, 杨小龙, 韩顺涛, 等. 聚丙烯腈材料改性方法及研究进展[J]. 中国塑料, 2022, 36(4): 158-165. DOI: 10. 19491/j.issn.1001-9278.2022.04.023http://dx.doi.org/10.19491/j.issn.1001-9278.2022.04.023.
CHEN Wenjing, YANG Xiaolong, HAN Shuntao, et al. Research progress in modification methods of polyacrylonitrile materials[J]. China Plastics, 2022, 36(4): 158-165. DOI: 10.19491/j.issn.1001-9278.2022. 04.023http://dx.doi.org/10.19491/j.issn.1001-9278.2022.04.023.
潘祖仁. 高分子化学[M]. 5版. 北京: 化学工业出版社, 2011.
PAN Zuren. Polymer chemistry[M]. 5th ed. Beijing: Chemical Industry Press, 2011.
刘晓辉, 胡晓辉. 丙烯腈与亲水性单体的自由基共聚合及聚合物的成膜性[J]. 天津工业大学学报, 2016, 35(4): 6-9. DOI: 10.3969/j.issn.1671-024x.2016.04.002http://dx.doi.org/10.3969/j.issn.1671-024x.2016.04.002.
LIU Xiaohui, HU Xiaohui. Radical copolymerization of acrylonitrile with hydrophilic monomer and film-forming exploration of polymer[J]. Journal of Tiangong University, 2016, 35(4): 6-9. DOI: 10.3969/j.issn.1671-024x.2016.04.002http://dx.doi.org/10.3969/j.issn.1671-024x.2016.04.002.
曾照坡. 混合溶剂沉淀聚合法制备P(AN/IA)及其结构性能研究[D]. 上海: 东华大学, 2017.
ZENG Zhaopo. Preparation of P(AN/IA) by mixed solvent precipitation polymerization and its structural properties[D]. Shanghai: Donghua University, 2017.
葛学平, 白如科. γ-射线辐射活性自由基聚合研究[J]. 化学进展, 2007, 19(9): 1406-1412.
GE Xueping, BAI Ruke. The investigation of living/controlled free radical polymerization under γ-ray irradiation[J]. Progress in Chemistry, 2007, 19(9): 1406-1412.
孙锐, 王雨松, 姜志文, 等. 丙烯腈/4-乙烯基吡啶辐射溶液共聚合[J]. 辐射研究与辐射工艺学报, 2022, 40(1): 010201. DOI: 10.11889/j.1000-3436.2021-0103http://dx.doi.org/10.11889/j.1000-3436.2021-0103.
SUN Rui, WANG Yusong, JIANG Zhiwen, et al. Radiation-induced solution copolymerization of acrylonitrile and 4-vinylpyridine[J]. Journal of Radiation Research and Radiation Processing, 2022, 40(1): 010201. DOI: 10.11889/j.1000-3436.2021-0103http://dx.doi.org/10.11889/j.1000-3436.2021-0103.
郭玉阳, 张洪超, 张雪松, 等. 水解聚丙烯腈超滤膜的制备与性能[J]. 现代塑料加工应用, 2020, 32(3): 12-15. DOI: 10.19690/j.issn1004-3055.20200017http://dx.doi.org/10.19690/j.issn1004-3055.20200017.
GUO Yuyang, ZHANG Hongchao, ZHANG Xuesong, et al. Preparation and properties of hydrolyzed polyacrylonitrile ultrafiltration membrane[J]. Modern Plastics Processing and Applications, 2020, 32(3): 12-15. DOI: 10.19690/j.issn1004-3055.20200017http://dx.doi.org/10.19690/j.issn1004-3055.20200017.
张志成, 葛学武, 葛敏, 等. 辐射引发丙烯腈-丙烯酸甲酯-衣康酸三元沉淀共聚合[J]. 高等学校化学学报, 1994, 15(10): 1575-1577. 10.3321/j.issn:0251-0790.1994.10.039http://dx.doi.org/10.3321/j.issn:0251-0790.1994.10.039
ZHANG Zhicheng, GE Xuewu, GE Min, et al. Radiation induced precipitation copolymerization of acrylonitrile, methyl acrylate and itaconic acid[J]. Chemical Research in Chinese Universities, 1994, 15(10): 1575-1577. 10.3321/j.issn:0251-0790.1994.10.039http://dx.doi.org/10.3321/j.issn:0251-0790.1994.10.039
Shibukawa T, Sone M, Uchida A, et al. Light-scattering study of polyacrylonitrile solution[J]. Journal of Polymer Science Part A-1: Polymer Chemistry, 1968, 6(1): 147-159. DOI: 10.1002/pol.1968.150060114http://dx.doi.org/10.1002/pol.1968.150060114.
陈稀, 黄象安. 化学纤维实验教程[M]. 北京: 纺织工业出版社, 1988.
CHEN Xi, HUANG Xiangan. Chemical fiber experimental course[M]. Beijing: Textile Industry Press, 1988.
Safarpour M, Khataee A, Vatanpour V. Preparation of a novel polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with reduced graphene oxide/titanium dioxide (TiO2) nanocomposite with enhanced hydrophilicity and antifouling properties[J]. Industrial & Engineering Chemistry Research, 2014, 53(34): 13370-13382. DOI: 10.1021/ie502407ghttp://dx.doi.org/10.1021/ie502407g.
郭雪松, 顾嘉怡, 胡建臣, 等. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(2): 34-40. DOI: 10.13475/j.fzxb.20200804607http://dx.doi.org/10.13475/j.fzxb.20200804607.
GUO Xuesong, GU Jiayi, HU Jianchen, et al. Preparation and properties of polyacrylonitrile/carboxyl styrene butadiene latex composite nanofibrous membranes[J]. Journal of Textile Research, 2021, 42(2): 34-40. DOI: 10. 13475/j.fzxb.20200804607http://dx.doi.org/10.13475/j.fzxb.20200804607.
Zhao Y Q, Liang J J, Peng M X, et al. A new process based on mixed-solvent precipitation polymerization to synthesize high molecular weight polyacrylonitrile initiated by ammonium persulphate[J]. Fibers and Polymers, 2016, 17(12): 2162-2166. DOI: 10.1007/s12221-016-6385-zhttp://dx.doi.org/10.1007/s12221-016-6385-z.
Liu C L, Ni X P, Chen H F, et al. High molecular weight poly(acrylonitrile-co-3-aminocarbonyl-3-butenoic acid methyl ester) prepared by mixed solvent polymerization I. Effect of monomer feed ratios on polymerization and stabilization[J]. Journal of Polymer Research, 2019, 26(12): 1-11. DOI: 10.1007/s10965-019-1927-xhttp://dx.doi.org/10.1007/s10965-019-1927-x.
裴玉新, 徐又一. 丙烯腈-马来酸酐共聚物合成的研究(一)[J]. 纺织学报, 1999, 20(6): 23-25. DOI: 10. 13475/j.fzxb.1999.06.008http://dx.doi.org/10.13475/j.fzxb.1999.06.008.
PEI Yuxin, XU Youyi. Synthesis and characterization of acrylonitrile-maleic anhydride copolymer(Ⅰ)[J]. Journal of Textile Research, 1999, 20(6): 23-25. DOI: 10. 13475/j.fzxb.1999.06.008http://dx.doi.org/10.13475/j.fzxb.1999.06.008.
Xu Z W, Wu T F, Shi J, et al. Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment[J]. Journal of Membrane Science, 2016, 520: 281-293. DOI: 10. 1016/j.memsci.2016.07.060http://dx.doi.org/10.1016/j.memsci.2016.07.060.
Senthilkumar S, Rajesh S, Jayalakshmi A, et al. Biocompatibility studies of polyacrylonitrile membranes modified with carboxylated polyetherimide[J]. Materials Science and Engineering C, 2013, 33(7): 3615-3626. DOI: 10.1016/j.msec.2013.04.043http://dx.doi.org/10.1016/j.msec.2013.04.043.
Wang S Y, Fang L F, Cheng L, et al. Novel ultrafiltration membranes with excellent antifouling properties and chlorine resistance using a poly(vinyl chloride)-based copolymer[J]. Journal of Membrane Science, 2018, 549: 101-110. DOI: 10.1016/j.memsci.2017.11.074http://dx.doi.org/10.1016/j.memsci.2017.11.074.
Han N, Zhang W X, Wang W J, et al. Amphiphilic cellulose for enhancing the antifouling and separation performances of poly (acrylonitrile-co-methyl acrylate) ultrafiltration membrane[J]. Journal of Membrane Science, 2019, 591: 117276. DOI: 10.1016/j.memsci. 2019.117276http://dx.doi.org/10.1016/j.memsci.2019.117276.
Akbari A, Aliyarizadeh E, Mojallali Rostami S M, et al. Novel sulfonated polyamide thin-film composite nanofiltration membranes with improved water flux and anti-fouling properties[J]. Desalination, 2016, 377: 11-22. DOI: 10.1016/j.desal.2015.08.025http://dx.doi.org/10.1016/j.desal.2015.08.025.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构