1.上海理工大学 上海 200093
2.中国科学院上海应用物理研究所 上海 201800
3.上海科技大学 上海 200031
梁青如,男,1998年2月出生,2020年于洛阳师范学院获得学士学位,现为上海理工大学在读硕士研究生,化学工程专业
邢哲,助理研究员,E-mail:xingzhe@sinap.ac.cn
吴国忠,研究员,E-mail:wuguozhong@sinap.ac.cn
扫 描 看 全 文
梁青如, 季珎琰, 董春雷, 等. 辐射法制备环氧功能化聚乙烯-辛烯及在尼龙6增韧改性中的应用[J]. 辐射研究与辐射工艺学报, 2023,41(1):24-32.
LIANG Qingru, JI Zhenyan, DONG Chunlei, et al. Epoxy-functionalized polyethylene-octene prepared by γ-ray radiation and its application in polyamide 6 toughening modification[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):24-32.
梁青如, 季珎琰, 董春雷, 等. 辐射法制备环氧功能化聚乙烯-辛烯及在尼龙6增韧改性中的应用[J]. 辐射研究与辐射工艺学报, 2023,41(1):24-32. DOI: 10.11889/j.1000-3436.2022-0107.
LIANG Qingru, JI Zhenyan, DONG Chunlei, et al. Epoxy-functionalized polyethylene-octene prepared by γ-ray radiation and its application in polyamide 6 toughening modification[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):24-32. DOI: 10.11889/j.1000-3436.2022-0107.
利用,60,Co γ射线辐射接枝法制备环氧功能化的乙烯-辛烯共聚物(POE-,g,-PGMA),并且采用双螺杆熔融挤出法制备添加POE-,g,-PGMA的尼龙6/聚乙烯-辛烯(PA6/POE)合金。研究了添加POE-,g,-PGMA对PA6/POE合金力学性能、热性能、表面形貌、界面相容性和吸水特性的影响。结果表明:γ射线引发了GMA在POE上的接枝聚合反应,PA6/POE合金断面的SEM照片显示添加POE-,g,-PGMA后POE分散相粒径显著减小,表明POE-,g,-PGMA起到增容剂的作用;Molau试验的结果证实了POE-,g,-PGMA与PA6之间的增容反应;热分析表明,分散相POE及POE-,g,-PGMA的加入对PA6的熔融行为影响不大,但在降温结晶过程中结晶温度提前约18 °C,结晶度提升约为4.5%。此外,与未增容PA6/POE合金相比,增容PA6/POE合金的缺口冲击强度显著提高,在本实验条件下,POE-,g,-PGMA添加量为3%时缺口冲击强度最高值为纯PA6的2.75倍。
Epoxy-functionalized ethylene-octene copolymer (POE-,g,-PGMA) was prepared by ,60,Co γ-ray radiation, and polyamide 6/polyethylene-octene blend (PA6/POE) containing POE-,g,-PGMA was prepared by twin-screw melt extrusion. In this study, the mechanical properties, thermal properties, surface morphology, interfacial compatibility, and water absorption properties of PA6/POE blends with added POE-g-PGMA were investigated. The results showed that GMA was successfully grafted on POE by γ-ray radiation. The morphological analysis showed that the addition of POE-,g,-PGMA enhanced the dispersion of POE particles in the PA6 matrix. In particular, it demonstrated that with the addition of POE-,g,-PGMA, pure PA6 has good interfacial compatibility with POE. The results of the Molau test confirmed the compatibilization reactions between POE-,g,-PGMA and PA6. The thermal analysis showed that the addition of POE and POE-,g,-PGMA in the dispersed phase had negligible effect on the melting behavior of PA6; however, the crystallization temperature of PA6 improved by approximately 18 °C during the cooling crystallization process, and the crystallinity increased by approximately 4.5%. Furthermore, the impact strength of the compatibilized PA6/POE blend was significantly higher than that of the PA6/POE blend, with the highest value of impact strength obtained at a POE-,g,-PGMA content of 3% being approximately 2.75 times greater than that of pure PA6 under the experimental conditions.
辐射接枝环氧功能化尼龙6界面相容性缺口冲击强度
Radiation graftingEpoxy functionalizationPolyamide 6Interfaciale compatibilityNotched impact strength
Cai Y B, Li Q, Wei Q F, et al. Structures, thermal stability, and crystalline properties of polyamide6/organic-modified Fe-montmorillonite composite nanofibers by electrospinning[J]. Journal of Materials Science, 2008, 43(18): 6132-6138. DOI: 10.1007/s10853-008-2921-6http://dx.doi.org/10.1007/s10853-008-2921-6.
Vannini M, Marchese P, Celli A, et al. Strategy to improve PA6 performances by melt compounding[J]. Polymer Testing, 2018, 67: 84-91. DOI: 10.1016/j.polymertesting.2018.02.021http://dx.doi.org/10.1016/j.polymertesting.2018.02.021.
Aparna S, Purnima D, Adusumalli R B. Review on various compatibilizers and its effect on mechanical properties of compatibilized nylon blends[J]. Polymer-Plastics Technology and Engineering, 2017, 56(6): 617-634. DOI: 10.1080/03602559.2016.1233280http://dx.doi.org/10.1080/03602559.2016.1233280.
Poongavalappil S, Svoboda P, Theravalappil R, et al. Study on the influence of electron beam irradiation on the thermal, mechanical, and rheological properties of ethylene-octene copolymer with high comonomer content[J]. Journal of Applied Polymer Science, 2013, 128(5): 3026-3033. DOI: 10.1002/app.38479http://dx.doi.org/10.1002/app.38479.
Basuli U, Chaki T K, Naskar K. Influence of Engage® copolymer type on the properties of Engage®/silicone rubber-based thermoplastic dynamic vulcanizates[J]. Express Polymer Letters, 2008, 2(12): 846-854. DOI: 10. 3144/expresspolymlett.2008.99http://dx.doi.org/10.3144/expresspolymlett.2008.99.
Hong C E, Lee Y, Jin B E, et al. Tensile properties and stress whitening of polypropylene/polyolefin elastomer/magnesium hydroxide flame retardant composites for cable insulating application[J]. Journal of Applied Polymer Science, 2005, 97(6): 2311-2318. DOI: 10.1002/app.21776http://dx.doi.org/10.1002/app.21776.
El-Wakil A A, Moustafa H, Abdel-Hakim A. Effect of LDPE-g-MA as a compatibilizer for LDPE/PA6 blend on the phase morphology and mechanical properties[J]. Polymer Bulletin, 2022, 79(4): 2249-2262. DOI: 10.1007/s00289-021-03618-9http://dx.doi.org/10.1007/s00289-021-03618-9.
de Almeida Santos da Silva G, D’Almeida J R M. Mechanical properties and morphology of HDPE/PA12 blends compatibilized with HDPE-alt-MAH[J]. Polymers and Polymer Composites, 2022, 30: 096739112110640. DOI: 10.1177/09673911211064049http://dx.doi.org/10.1177/09673911211064049.
Liu X J, Gu X H, Hou B Q. Preparation of POE graft copolymer and its application of toughening modification for PA6[J]. Polymer-Plastics Technology and Engineering, 2013, 52(4): 344-351. DOI: 10.1080/03602559.2012.748801http://dx.doi.org/10.1080/03602559.2012.748801.
Esmizadeh E, Vahidifar A, Shojaie S, et al. Tailoring the properties of PA6 into high-performance thermoplastic elastomer: simultaneous reinforcement and impact property modification[J]. Materials Today Communications, 2021, 26: 102027. DOI: 10.1016/j.mtcomm.2021.102027http://dx.doi.org/10.1016/j.mtcomm.2021.102027.
Lin X T, Liu Y J, Chen X, et al. Reactive compatibilization of polyamide 6/olefin block copolymer blends: phase morphology, rheological behavior, thermal behavior, and mechanical properties[J]. Materials (Basel, Switzerland), 2020, 13(5): 1146. DOI: 10.3390/ma13051146http://dx.doi.org/10.3390/ma13051146.
张雪娇, 赵晓莉. 聚合物合金相容性研究进展[J]. 应用化工, 2012, 41(8): 1448-1451. DOI: 10.16581/j.cnki.issn1671-3206.2012.08.005http://dx.doi.org/10.16581/j.cnki.issn1671-3206.2012.08.005.
ZHANG Xuejiao, ZHAO Xiaoli. Research progress in compatibility of polymer alloy[J]. Applied Chemical Industry, 2012, 41(8): 1448-1451. DOI: 10.16581/j.cnki.issn1671-3206.2012.08.005http://dx.doi.org/10.16581/j.cnki.issn1671-3206.2012.08.005.
熊智, 李玉龙, 冯鑫鑫, 等. 辐射制备复合超级吸水材料及其抗紫外性能[J]. 辐射研究与辐射工艺学报, 2022, 40(4): 040202. DOI: 10.11889/j.1000-3436.2022-0008http://dx.doi.org/10.11889/j.1000-3436.2022-0008.
XIONG Zhi, LI Yulong, FENG Xinxin, et al. Radiation synthesis of a super absorbent polymer and its ultraviolet resistance property[J]. Journal of Radiation Research and Radiation Processing, 2022, 40(4): 040202. DOI: 10. 11889/j.1000-3436.2022-0008http://dx.doi.org/10.11889/j.1000-3436.2022-0008.
Chowdhury S R, Sabharwal S. Molecular-scale design of a high performance organic-inorganic hybrid with the help of gamma radiation[J]. Journal of Materials Chemistry, 2011, 21(19): 6999-7006. DOI: 10.1039/C1JM10943Jhttp://dx.doi.org/10.1039/C1JM10943J.
Lima M S, Matias Á A, Costa J R C, et al. Glycidyl methacrylate-based copolymers as new compatibilizers for polypropylene/polyethylene terephthalate blends[J]. Journal of Polymer Research, 2019, 26(6): 127. DOI: 10. 1007/s10965-019-1784-7http://dx.doi.org/10.1007/s10965-019-1784-7.
Gopalan A M, Naskar K. Ultra-high molecular weight styrenic block copolymer/TPU blends for automotive applications: influence of various compatibilizers[J]. Polymers for Advanced Technologies, 2019, 30(3): 608-619. DOI: 10.1002/pat.4497http://dx.doi.org/10.1002/pat.4497.
廖晓兰, 杨学稳, 郭晴晴. 固相接枝法合成聚丙烯、马来酸酐、苯乙烯的接枝物[J]. 天津化工, 2010, 24(1): 12-14. DOI: 10.3969/j.issn.1008-1267.2010.01.004http://dx.doi.org/10.3969/j.issn.1008-1267.2010.01.004.
LIAO Xiaolan, YANG Xuewen, GUO Qingqing. Solid phase graft copolymerization of PP-g-(MAH-St) and its compatibilizing effect of PP/SBR blends[J]. Tianjin Chemical Industry, 2010, 24(1): 12-14. DOI: 10.3969/j.issn.1008-1267.2010.01.004http://dx.doi.org/10.3969/j.issn.1008-1267.2010.01.004.
Li Z, et al. A facile method to prepare polypropylene/poly(butyl acrylate) alloy via water-solid phase suspension grafting polymerization[J]. Chinese Chemical Letters, 2015, 26(11): 1351-1354. DOI: 10.1016/j.cclet.2015. 06.018http://dx.doi.org/10.1016/j.cclet.2015.06.018.
Tan X M. Radiation grafting of maleic anhydride onto polypropylene in solid state via ultrafine blend[J]. Radiation Effects and Defects in Solids, 2014, 169(5): 437-446. DOI: 10.1080/10420150.2014.905937http://dx.doi.org/10.1080/10420150.2014.905937.
Jha A, Ray Chowdhury S, Krishnanand K, et al. Radiation-assisted controlled grafting and reaction parameter optimization of an industrially important polyolefin elastomer (POE)[J]. Polymers for Advanced Technologies, 2016, 27(7): 889-897. DOI: 10.1002/pat. 3745http://dx.doi.org/10.1002/pat.3745.
毛泽誉. 烯烃共聚物的接枝改性及其在增韧PBT中的应用[D]. 长春: 长春工业大学, 2020.
MAO Zeyu. Graft modification of olefin copolymer and application in toughening PBT[D]. Changchun: Changchun University of Technology, 2020.
Rossato J H H, Lemos H G, Mantovani G L. The influence of viscosity and composition of ABS on the ABS/SBS blend morphology and properties[J]. Journal of Applied Polymer Science, 2019, 136(8): 47075. DOI: 10. 1002/app.47075http://dx.doi.org/10.1002/app.47075.
Sundararaj U, Macosko C W. Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization[J]. Macromolecules, 1995, 28(8): 2647-2657. DOI: 10.1021/ma00112a009http://dx.doi.org/10.1021/ma00112a009.
van Hemelrijck E, van Puyvelde P, Macosko C W, et al. The effect of block copolymer architecture on the coalescence and interfacial elasticity in compatibilized polymer blends[J]. Journal of Rheology, 2005, 49(3): 783-798. DOI: 10.1122/1.1888625http://dx.doi.org/10.1122/1.1888625.
van Hemelrijck E, van Puyvelde P, Velankar S, et al. Interfacial elasticity and coalescence suppression in compatibilized polymer blends[J]. Journal of Rheology, 2004, 48(1): 143-158. DOI: 10.1122/1.1634987http://dx.doi.org/10.1122/1.1634987.
张帆, 季珎琰, 沈蓉芳, 等. 灭菌剂量下γ射线辐照对环烯烃共聚物的影响及机理研究[J]. 核技术, 2022, 45(3): 030302. DOI: 10.11889/j.0253-3219.2022.hjs.45.030302http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.030302.
ZHANG Fan, JI Zhenyan, SHEN Rongfang, et al. Effect and mechanism of γ-ray irradiation on cyclic olefin copolymer in the sterilization dose range[J]. Nuclear Techniques, 2022, 45(3): 030302. DOI: 10.11889/j.0253-3219.2022.hjs.45.030302http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.030302.
Zhang J G, Deng J. The effect of maleic anhydride grafted styrene-ethylene-butylene-styrene on the friction and wear properties of Polyamide6/carbon nanotube composites[J]. Polymer-Plastics Technology and Engineering, 2011, 50(15): 1533-1536. DOI: 10.1080/03602559.2011.603778http://dx.doi.org/10.1080/03602559.2011.603778.
El-Wakil A A. Study on effect of natural rubber-graft-1, 2-phenylenediamine as antioxidant on oxidation resistance for natural rubber[J]. Polymer-Plastics Technology and Engineering, 2007, 46(6): 661-666. DOI: 10.1080/15583720701271443http://dx.doi.org/10.1080/15583720701271443.
0
浏览量
25
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构