1.中国科学院上海应用物理研究所 上海 201800
2.中国科学院大学 北京 100049
3.上海科技大学物质科学与技术学院 上海 200031
高杨,男,1998年2月出生,2019年于华东理工大学获学士学位,现为中国科学院上海应用物理研究所在读硕士研究生,无机化学专业
李荣,副研究员,E-mail: lirong@sinap.ac.cn
吴国忠,研究员,E-mail: wuguozhong@sinap.ac.cn
扫 描 看 全 文
高杨, 冯鑫鑫, 李林繁, 等. 辐射法制备淀粉基超级吸水材料及其性能[J]. 辐射研究与辐射工艺学报, 2023,41(1):42-49.
GAO Yang, FENG Xinxin, LI Linfan, et al. Preparation of a starch-based superabsorbent polymer by γ-ray irradiation and investigation of its properties[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):42-49.
高杨, 冯鑫鑫, 李林繁, 等. 辐射法制备淀粉基超级吸水材料及其性能[J]. 辐射研究与辐射工艺学报, 2023,41(1):42-49. DOI: 10.11889/j.1000-3436.2022-0112.
GAO Yang, FENG Xinxin, LI Linfan, et al. Preparation of a starch-based superabsorbent polymer by γ-ray irradiation and investigation of its properties[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):42-49. DOI: 10.11889/j.1000-3436.2022-0112.
本文以淀粉与丙烯酸单体为主要原料,采用钴-60 γ射线共辐射法制得淀粉基超级吸水材料(Super absorbent polymer, SAP)。通过傅里叶变换红外光谱对SAP进行化学结构表征。扫描电镜图显示,SAP颗粒表面含有大量中孔结构。热重分析测试结果表明,SAP较原始淀粉样品的热稳定性有明显提升。吸收剂量、丙烯酸与淀粉的投料比显著影响SAP的吸水性能。通过筛选反应条件,SAP的吸水(去离子水)倍率可达到532 g/g(吸收剂量:20 kGy;交联剂:80 mg/L;淀粉与丙烯酸投料比:1/2)。将SAP负载硝酸钾和磷酸钠,结果表明,SAP能够高效释放负载的离子,磷酸根离子释放率为80%,钾离子为82%。
A super absorbent polymer (SAP) was prepared using starch and acrylic acid under exposure to ,60,Co γ-rays irradiation. The chemical structure of the SAP was characterized by Fourier-transform infrared spectroscopy Scanning electron micrographs showed that the surface of the SAP contained numerous mesoporous structures. Thermogravimetric analysis indicated improved thermal stability of the SAP compared to that of the original starch. The absorbed dose and feed ratio of the acrylic acid and starch significantly affected the water absorption performance of the SAP. The water absorption capacity of the SAP was 532 g/g at the optimal conditions (absorbed dose: 20 kGy, crosslinking agent: 80 mg/L, feed ratio of starch to acrylic acid: 1/2). The SAP efficiently released the loaded KNO,3, or Na,3,PO,4,; the release rates were 82% for K,+, and 80% for PO,4,3-,.
超级吸水材料辐射接枝淀粉丙烯酸
Super absorbent polymerRadiation graftingStarchAcrylic acid
Zhang J P, Wang A Q. Study on superabsorbent composites. IX: synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays[J]. Reactive and Functional Polymers, 2007, 67(8): 737-745. DOI: 10.1016/j.reactfunctpolym. 2007.05.001http://dx.doi.org/10.1016/j.reactfunctpolym.2007.05.001.
Laftah W A, Hashim S, Ibrahim A N. Polymer hydrogels: a review[J]. Polymer-Plastics Technology and Engineering, 2011, 50(14): 1475-1486. DOI: 10.1080/03602559.2011.593082http://dx.doi.org/10.1080/03602559.2011.593082.
Osada Y, Gong J P, Tanaka Y. Polymer gels[J]. Journal of Macromolecular Science, Part C: Polymer Reviews, 2004, 44(1): 87-112. DOI: 10.1081/mc-120027935http://dx.doi.org/10.1081/mc-120027935.
吴勇, 水明海, 张赓, 等. 海瑞达保水剂在我国旱作节水农业生产中的综合应用研究[J]. 节水灌溉, 2021(7): 71-75. 10.3969/j.issn.1007-4929.2021.07.014http://dx.doi.org/10.3969/j.issn.1007-4929.2021.07.014
WU Yong, SHUI Minghai, ZHANG Geng, et al. Study on the comprehensive application of Hairuida super absorbent polymers in dry farming and water saving agriculture in China[J]. Water Saving Irrigation, 2021(7): 71-75. 10.3969/j.issn.1007-4929.2021.07.014http://dx.doi.org/10.3969/j.issn.1007-4929.2021.07.014
牛育华, 李仲谨, 郝明德. 保水剂在黄土高原旱地农业应用效果的研究[J]. 水土保持研究, 2007, 14(3): 11-12. DOI: 10.3969/j.issn.1005-3409.2007.03.004http://dx.doi.org/10.3969/j.issn.1005-3409.2007.03.004.
NIU Yuhua, LI Zhongjin, HAO Mingde. Effects of application of water-holding agent on arid areas in loess plateau[J]. Research of Soil and Water Conservation, 2007, 14(3): 11-12. DOI: 10.3969/j.issn.1005-3409. 2007.03.004http://dx.doi.org/10.3969/j.issn.1005-3409.2007.03.004.
Islam M R, Hu Y G, Mao S S, et al. Effectiveness of a water-saving super-absorbent polymer in soil water conservation for corn (Zea mays L.) based on eco-physiological parameters[J]. Journal of the Science of Food and Agriculture, 2011, 91(11): 1998-2005. DOI: 10. 1002/jsfa.4408http://dx.doi.org/10.1002/jsfa.4408.
Xiao X M, Yu L, Xie F W, et al. One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer[J]. Chemical Engineering Journal, 2017, 309: 607-616. DOI: 10.1016/j.cej.2016.10.101http://dx.doi.org/10.1016/j.cej.2016.10.101.
Zhang Y, Liang X Y, Yang X G, et al. An eco-friendly slow-release urea fertilizer based on waste mulberry branches for potential agriculture and horticulture applications[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(7): 1871-1878. DOI: 10.1021/sc500204zhttp://dx.doi.org/10.1021/sc500204z.
Jha P K, Jha, R, Gupta B L, et al. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: a novel injectable male contraceptive[J]. Radiation Physics and Chemistry, 2010, 79(5): 663-671. DOI: 10.1016/j.radphyschem.2009.11.010http://dx.doi.org/10.1016/j.radphyschem.2009.11.010.
Wang M, Xu L, Hu H, et al. Radiation synthesis of PVP/CMC hydrogels as wound dressing[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2007, 265(1): 385-389. DOI: 10.1016/j.nimb.2007.09.009http://dx.doi.org/10.1016/j.nimb.2007.09.009.
司徒艳结, 卫尤明, 杨俊颖, 等. 保水剂对作物生长的不利影响及发生机制[J]. 植物营养与肥料学报, 2022, 28(7): 1318-1328. DOI: 10.11674/zwyf.2021586http://dx.doi.org/10.11674/zwyf.2021586.
SITU Yanjie, WEI Youming, YANG Junying, et al. Adverse effects of superabsorbent polymers on crop growth and the underlying mechanisms [J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1318-1328. DOI: 10.11674/zwyf.2021586http://dx.doi.org/10.11674/zwyf.2021586.
李希, 刘玉荣, 郑袁明, 等. 保水剂性能及其农用安全性评价研究进展[J]. 环境科学, 2014, 35(1): 394-400. DOI: 10.13227/j.hjkx.2014.01.056http://dx.doi.org/10.13227/j.hjkx.2014.01.056.
LI Xi, LIU Yurong, ZHENG Yuanming, et al. Characterization and soil environmental safety assessment of super absorbent polymers in agricultural application[J]. Environmental Science, 2014, 35(1): 394-400. DOI: 10.13227/j.hjkx.2014.01.056http://dx.doi.org/10.13227/j.hjkx.2014.01.056.
Lee J, Park S, Roh H G, et al. Preparation and characterization of superabsorbent polymers based on starch aldehydes and carboxymethyl cellulose[J]. Polymers (Basel), 2018, 10(6):605. DOI: 10.3390/polym10060605http://dx.doi.org/10.3390/polym10060605.
Parvathy P C, Jyothi A N. Water sorption kinetics of superabsorbent hydrogels of saponified cassava starch-graft-poly(acrylamide) [J]. Starch - Stärke, 2012, 64(10): 803-812. DOI: 10.1002/star.201200001http://dx.doi.org/10.1002/star.201200001.
Dhanapal V, Subramanian K. Recycling of reactive dye using semi-interpenetrating polymer network from sodium alginate and isopropyl acrylamide[J]. Journal of Applied Polymer Science, 2014, 131(21): 40968. DOI: 10.1002/app.40968http://dx.doi.org/10.1002/app.40968.
熊智, 李玉龙, 冯鑫鑫, 等.辐射制备复合超级吸水材料及其抗紫外性能[J]. 辐射研究与辐射工艺学报, 2022, 40(4): 040402. DOI: 10.11889/j.1000-3436.2022-0008http://dx.doi.org/10.11889/j.1000-3436.2022-0008.
XIONG Zhi, LI Yulong, FENG Xinxin, et al. Radiation synthesis of a super absorbent polymer and its ultraviolet resistance property[J]. Journal of Radiation Research and Radiation Processing, 2022, 40(4): 040402. DOI: 10. 11889/j.1000-3436.2022-0008http://dx.doi.org/10.11889/j.1000-3436.2022-0008.
Ismail H, Irani M, Ahmad Z. Starch-based hydrogels: present status and applications[J]. International Journal of Polymeric Materials, 2013, 62(7): 411-420. DOI: 10. 1080/00914037.2012.719141http://dx.doi.org/10.1080/00914037.2012.719141.
Wang H M, Hu H, Yang H, et al. Hydroxyethyl starch based smart nanomedicine[J]. RSC Advances, 2021, 11(6): 3226-3240. DOI: 10.1039/d0ra09663fhttp://dx.doi.org/10.1039/d0ra09663f.
Teli M D, Mallick A. Application of sorghum starch for preparing superabsorbent[J]. Journal of Polymers and the Environment, 2018, 26(4): 1581-1591. DOI: 10.1007/s10924-017-1057-7http://dx.doi.org/10.1007/s10924-017-1057-7.
张帆, 季珎琰, 沈蓉芳, 等. 灭菌剂量下γ射线辐照对环烯烃共聚物的影响及机理研究[J].核技术, 2022, 45(3): 030302. DOI: 10.11889/j.0253-3219.2022.hjs.45.030302http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.030302.
ZHANG Fan, JI Zhenyan, SHEN Rongfang, et al. Effect and mechanism of γ-ray irradiation on cyclic olefin copolymer in the sterilization dose range[J]. Nuclear Techniques, 2022, 45(3): 030302. DOI: 10.11889/j.0253-3219.2022.hjs.45.030302http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.030302.
Qiao D L, Tu W Y, Wang Z, et al. Influence of crosslinker amount on the microstructure and properties of starch-based superabsorbent polymers by one-step preparation at high starch concentration[J]. International Journal of Biological Macromolecules, 2019, 129: 679-685. DOI: 10.1016/j.ijbiomac.2019.02.019http://dx.doi.org/10.1016/j.ijbiomac.2019.02.019.
Lyu X, Song W, Ti Y, et al. Gamma radiation-induced grafting of acrylamide and dimethyl diallyl ammonium chloride onto starch[J]. Carbohydrate Polymers, 2013, 92(1): 388-393. DOI: 10.1016/j.carbpol.2012.10.002http://dx.doi.org/10.1016/j.carbpol.2012.10.002.
Suwanmala P, Hemvichian K, Hoshina H, et al. Preparation of metal adsorbent from poly(methyl acrylate)-grafted-cassava starch via gamma irradiation[J]. Radiation Physics and Chemistry, 2012, 81(8): 982-985. DOI: 10.1016/j.radphyschem.2011.10.011http://dx.doi.org/10.1016/j.radphyschem.2011.10.011.
蒋海青, 何伟荣, 蔡锡明, 等. 钴源与加速器辐照效应及辐照加工试验综合平台[J]. 辐射研究与辐射工艺学报, 2022, 40(1): 011201. DOI: 10.11889/j.1000-3436.2022-0007http://dx.doi.org/10.11889/j.1000-3436.2022-0007.
JIANG Haiqing, HE Weirong, CAI Ximing, et al. Integrated 60Co and electron accelerator platform for irradiation effect and irradiation processing tests[J]. Journal of Radiation Research and Radiation Processing, 2022, 40(1): 011201. DOI: 10.11889/j.1000-3436.2022-0007http://dx.doi.org/10.11889/j.1000-3436.2022-0007.
Zhang Y N, Xu S A. Effects of amylose/amylopectin starch on starch-based superabsorbent polymers prepared by γ-radiation[J]. Starch - Stärke, 2017, 69(1/2): 1500294. DOI: 10.1002/star.201500294http://dx.doi.org/10.1002/star.201500294.
Meng Y Q, Ye L. Synthesis and swelling property of superabsorbent starch grafted with acrylic acid/2-acrylamido-2-methyl-1-propanesulfonic acid[J]. Journal of the Science of Food and Agriculture, 2017, 97(11): 3831-3840. DOI: 10.1002/jsfa.8247http://dx.doi.org/10.1002/jsfa.8247.
Spagnol C, Rodrigues F H A, Pereira A G B, et al. Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid)[J]. Carbohydrate Polymers, 2012, 87(3): 2038-2045. DOI: 10.1016/j.carbpol.2011.10.017http://dx.doi.org/10.1016/j.carbpol.2011.10.017.
Kiatkamjornwong S, Mongkolsawat K, Sonsuk M. Synthesis and property characterization of cassava starch grafted poly[acrylamide-co-(maleic acid)] superabsorbent via γ-irradiation[J]. Polymer, 2002, 43(14): 3915-3924. DOI: 10.1016/S0032-3861(02)00224-0http://dx.doi.org/10.1016/S0032-3861(02)00224-0.
Huang Y H, Lu J, Xiao C B. Thermal and mechanical properties of cationic guar gum/poly(acrylic acid) hydrogel membranes[J]. Polymer Degradation and Stability, 2007, 92(6): 1072-1081. DOI: 10.1016/j.polymdegradstab.2007.02.011http://dx.doi.org/10.1016/j.polymdegradstab.2007.02.011.
Liu Z, Miao Y G, Wang Z Y, et al. Synthesis and characterization of a novel super-absorbent based on chemically modified pulverized wheat straw and acrylic acid[J]. Carbohydrate Polymers, 2009, 77(1): 131-135. DOI: 10.1016/j.carbpol.2008.12.019http://dx.doi.org/10.1016/j.carbpol.2008.12.019.
Liu J H, Wang Q, Wang A Q. Synthesis and characterization of chitosan-g-poly(acrylic acid)/sodium humate superabsorbent[J]. Carbohydrate Polymers, 2007, 70(2): 166-173. DOI: 10.1016/j.carbpol.2007.03.015http://dx.doi.org/10.1016/j.carbpol.2007.03.015.
Jabbari E, Nozari S. Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution[J]. European Polymer Journal, 2000, 36 (12): 2685-2692. DOI: 10.1016/S0014-3057(00)00044-6http://dx.doi.org/10.1016/S0014-3057(00)00044-6.
Kiatkamjornwong S, Chvajarernpun J, Nakason C. Modification on liquid retention property of cassava starch by radiation grafting with acrylonitrile. I. Effect of γ-irradiation on grafting parameters[J]. Radiation Physics and Chemistry, 1993, 42(1/2/3): 47-52. DOI: 10.1016/0969-806X(93)90200-Ehttp://dx.doi.org/10.1016/0969-806X(93)90200-E.
Luo W, Zhang W A, Chen P, et al. Synthesis and properties of starch grafted poly[acrylamide-co-(acrylic acid)]/montmorillonite nanosuperabsorbent via γ-ray irradiation technique[J]. Journal of Applied Polymer Science, 2005, 96(4): 1341-1346. DOI: 10.1002/app. 21447http://dx.doi.org/10.1002/app.21447.
Zhang S F, Wang W, Wang H Y, et al. Synthesis and characterisation of starch grafted superabsorbent via 10 MeV electron-beam irradiation[J]. Carbohydrate Polymers, 2014, 101: 798-803. DOI: 10.1016/j.carbpol. 2013.10.009http://dx.doi.org/10.1016/j.carbpol.2013.10.009.
Kiatkamjornwong S, Chomsaksakul W, Sonsuk M. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide[J]. Radiation Physics and Chemistry, 2000, 59(4): 413-427. DOI: 10.1016/S0969-806X(00)00297-8http://dx.doi.org/10.1016/S0969-806X(00)00297-8.
0
浏览量
26
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构