1.空军军医大学军事预防医学系辐射防护医学教研室 西安 710032
2.陕西中医药大学公共卫生学院 咸阳 712000
孙艺宸,男,1999年11月出生,空军军医大学基础医学院学员,临床医学专业
林加金,讲师,E-mail: linjiajin913@126.com
扫 描 看 全 文
孙艺宸, 杜丹, 李静, 等. 实验动物体重差异引起的电磁剂量差异和不确定性[J]. 辐射研究与辐射工艺学报, 2023,41(1):60-66.
SUN Yichen, DU Dan, LI Jing, et al. Variations and uncertainty in electromagnetic dose caused by weight differences of experimental animals[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):60-66.
孙艺宸, 杜丹, 李静, 等. 实验动物体重差异引起的电磁剂量差异和不确定性[J]. 辐射研究与辐射工艺学报, 2023,41(1):60-66. DOI: 10.11889/j.1000-3436.2022-0115.
SUN Yichen, DU Dan, LI Jing, et al. Variations and uncertainty in electromagnetic dose caused by weight differences of experimental animals[J]. Journal of Radiation Research and Radiation Processing, 2023,41(1):60-66. DOI: 10.11889/j.1000-3436.2022-0115.
本文开展了实验动物体重差异引起的生物电磁剂量差异及不确定性评估研究。利用生物电磁仿真软件和三维数字化模型建立了平面波激励下实验大鼠的电磁剂量仿真环境,研究频段为0.1~6 GHz。结果表明:在体重扰动条件下,实验大鼠的体重和全身平均比吸收率值呈线性关系;在共振频率点以下,线性关系为正相关;在共振频率点以上,线性关系为负相关;在1~6 GHz区域内,线性拟合的拟合度接近于1。对实验大鼠的剂量不确定性进行了探究,提出了一种拟合计算评估法。结合实验设计案例,对拟合计算评估法的计算流程、计算量、评估准确度进行了对比研究,该评估方法具有准确率高、建模计算量小等特点。本研究对于生物电磁学实验设计及剂量评估具有一定的指导意义。
In this study, the biological electromagnetic dose variations and uncertainty caused by body weight differences in experimental animals were evaluated. An electromagnetic dose simulation environment of experimental rats under plane wave excitation was established using bio-electromagnetic simulation software and a three-dimensional digital model. The study frequency band was 0.1-6 GHz. The results showed that there was a linear relationship between the body weight of experimental rats and the whole-body average specific absorption rate under conditions of body weight disturbance. Below the resonant frequency point, the linear relationship was positive, whereas above the resonant frequency point, the linear relationship was negative. In the 1-6 GHz region, the degree of the linear fit was close to 1. The dose uncertainty for the experimental rats was investigated and a fitting calculation method was proposed. Combined with the experimental design case, the calculation process, calculation amount, and evaluation accuracy of the fitting calculation evaluation method were compared. The evaluation method had high accuracy and a low modeling calculation amount. The results of this study have certain guiding significance for the experimental design and dose evaluation of bioelectromagnetics.
差异不确定性比吸收率剂量电磁辐射
VariationUncertaintySpecific absorption rateDoseRadiofrequency
Hirata A, Diao Y L, Onishi T, et al. Assessment of human exposure to electromagnetic fields: review and future directions[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(5): 1619-1630. DOI: 10.1109/temc.2021.3109249http://dx.doi.org/10.1109/temc.2021.3109249.
Kim J, Lee K, Kim B, et al. Numerical and experimental assessments of focused microwave thermotherapy system at 925 MHz[J]. ETRI Journal, 2019, 41(6): 850-862. DOI: 10.4218/etrij.2018-0088http://dx.doi.org/10.4218/etrij.2018-0088.
林燕平, 逯迈, 刘曦, 等. 基于动物模型的磁感应热疗电磁场与温度场分布的研究[J]. 生物医学工程研究, 2019, 38(1): 16-21. DOI: 10.19529/j.cnki.1672-6278. 2019.01.04http://dx.doi.org/10.19529/j.cnki.1672-6278.2019.01.04.
LIN Yanping, LU Mai, LIU Xi, et al. Study on electromagnetic field and temperature field distribution in animal model during magnetic induction hyperthermia[J]. Journal of Biomedical Engineering Research, 2019, 38(1): 16-21. DOI: 10.19529/j.cnki.1672-6278.2019.01.04http://dx.doi.org/10.19529/j.cnki.1672-6278.2019.01.04.
Chakarothai J, Shi J J, Wang J Q, et al. Numerical techniques for SAR assessment of small animals in reverberation chamber[J]. IEEE Electromagnetic Compatibility Magazine, 2015, 4(1): 57-66. DOI: 10. 1109/MEMC.2015.7098514http://dx.doi.org/10.1109/MEMC.2015.7098514.
Bamba A, Joseph W, Vermeeren G, et al. A formula for human average whole-body SARwb under diffuse fields exposure in the GHz region[J]. Physics in Medicine and Biology, 2014, 59(23): 7435-7456. DOI: 10.1088/0031-9155/59/23/7435http://dx.doi.org/10.1088/0031-9155/59/23/7435.
Chakarothai J, Wake K, Watanabe S. Convergence of a single-frequency FDTD solution in numerical dosimetry[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(3): 707-714. DOI: 10.1109/TMTT. 2016.2518661http://dx.doi.org/10.1109/TMTT.2016.2518661.
童嘉锴, 齐红新, 王向晖, 等. 宽频电磁脉冲辐照大鼠体内电场分布的仿真计算[J]. 辐射研究与辐射工艺学报, 2022, 40(2): 020702. DOI: 10.11889/j.1000-3436.2021-0212http://dx.doi.org/10.11889/j.1000-3436.2021-0212
TONG Jiakai, QI Hongxin, WANG Xianghui, et al. Simulation calculation of electric field distribution in rats irradiated using broadband electromagnetic pulse[J]. Journal of Radiation Research and Radiation Processing, 2022, 40(2): 020702. DOI: 10.11889/j.1000-3436.2021-0212http://dx.doi.org/10.11889/j.1000-3436.2021-0212
Rashed E A, Gomez-Tames J, Hirata A. Human head skin thickness modeling for electromagnetic dosimetry[J]. IEEE Access, 7: 46176-46186. DOI: 10.1109/ACCESS. 2019.2904743http://dx.doi.org/10.1109/ACCESS.2019.2904743.
Dahdouh S, Varsier N, Nunez Ochoa M A, et al. Infants and young children modeling method for numerical dosimetry studies: application to plane wave exposure[J]. Physics in Medicine and Biology, 2016, 61(4): 1500-1514. DOI: 10.1088/0031-9155/61/4/1500http://dx.doi.org/10.1088/0031-9155/61/4/1500.
Kuster N, Torres V B, Nikoloski N, et al. Methodology of detailed dosimetry and treatment of uncertainty and variations for in vivo studies[J]. Bioelectromagnetics, 2006, 27(5): 378-391. DOI: 10.1002/bem.20219http://dx.doi.org/10.1002/bem.20219.
Gajsek P, Hurt W D, Ziriax J M, et al. Parametric dependence of SAR on permittivity values in a man model[J]. IEEE Transactions on Biomedical Engineering, 2001, 48(10): 1169-1177. DOI: 10.1109/10.951520http://dx.doi.org/10.1109/10.951520.
Conil E, Hadjem A, Gati A, et al. Influence of plane-wave incidence angle on whole body and local exposure at 2100 MHz[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(1): 48-52. DOI: 10.1109/TEMC. 2010.2061849http://dx.doi.org/10.1109/TEMC.2010.2061849.
Iskra S, McKenzie R, Cosic I. Factors influencing uncertainty in measurement of electric fields close to the body in personal RF dosimetry[J]. Radiation Protection Dosimetry, 2010, 140(1): 25-33. DOI: 10.1093/rpd/ncp309http://dx.doi.org/10.1093/rpd/ncp309.
Wang X H, Xia C J, Lu L, et al. Electromagnetic exposure dosimetry study on two free rats at 1.8 GHz via numerical simulation[J]. Frontiers in Public Health, 2021, 9: 721166. DOI: 10.3389/fpubh.2021.721166http://dx.doi.org/10.3389/fpubh.2021.721166.
Kesari K K, Behari J, Kumar S. Mutagenic response of 2.45 GHz radiation exposure on rat brain[J]. International Journal of Radiation Biology, 2010, 86(4): 334-343. DOI: 10.3109/09553000903564059http://dx.doi.org/10.3109/09553000903564059.
Kitchen R. RF andmicrowave radiation safety[M]. 2nd ed. Woburn M A: Newnes, 2001: 60-62. 10.1016/b978-075064355-9/50001-5http://dx.doi.org/10.1016/b978-075064355-9/50001-5
Lin J C. Electromagnetic fields in biological systems[M]. Boca Raton, FL: CRC Press, 2012: 24.
0
浏览量
11
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构