1.西南科技大学信息工程学院 绵阳 621010
2.西南科技大学特殊环境机器人技术四川省重点实验室 绵阳 621010
周怀芳,女,1995年12月出生,2020年于新疆大学获硕士学位,目前为西南科技大学博士研究生,控制科学与工程专业,E-mail: zhouhuaifang2020@163.com
张华,教授,E-mail: swust_aa@126.com
扫 描 看 全 文
周怀芳, 张华, 霍建文, 等. 基于混合蚁群算法的核应急车辆疏散路径规划[J]. 辐射研究与辐射工艺学报, 2023, 41(06): 060601.
ZHOU Huaifang, ZHANG Hua, HUO Jianwen, et al. Vehicle evacuation route planning in nuclear emergencies based on hybrid ant colony algorithm[J]. Journal of Radiation Research and Radiation Processing, 2023, 41(6): 060601.
周怀芳, 张华, 霍建文, 等. 基于混合蚁群算法的核应急车辆疏散路径规划[J]. 辐射研究与辐射工艺学报, 2023, 41(06): 060601. DOI: 10.11889/j.1000-3436.2023-0030.
ZHOU Huaifang, ZHANG Hua, HUO Jianwen, et al. Vehicle evacuation route planning in nuclear emergencies based on hybrid ant colony algorithm[J]. Journal of Radiation Research and Radiation Processing, 2023, 41(6): 060601. DOI: 10.11889/j.1000-3436.2023-0030.
核事故的发生具有不可预测性和破坏性,为应急车辆制定合理的疏散计划将危险区域的人员撤离至安置点,可以有效减少人员所受到的伤害。针对核事故下应急车辆路径规划问题,以累积辐射剂量为评价指标,提出了一种基于混合蚁群算法(Hybrid ant colony algorithm,HACO)的车辆路径规划方法。首先,利用模糊网络建立了时间窗内疏散路径平均通行时间期望模型,同时结合累积辐射剂量计算模型,建立了能够随时间变化的动态累积辐射剂量计算模型。然后在蚁群算法迭代过程中引入模拟退火算法,并且在邻域搜索中引入A*算法启发式思想,提高了算法全局寻优能力。为进一步提高算法的局部搜索能力,引入帕累托排序方式,在蚁群算法信息素更新方式中加入距离对信息素增量的影响。仿真结果表明:HACO算法相较于蚁群算法平均收敛值提高了31%,稳定性提高了30%,能够为核事故下疏散路径规划预案的制定提供技术支持。
Nuclear accidents, although unpredictable and devastating, can be mitigated through well-formulated evacuation plans. An efficient evacuation of residents from hazardous zones to safer locations can be ensured through such plans. To address the vehicle path planning challenge under nuclear accidents, this paper proposes a method based on the hybrid ant colony algorithm (HACO). Cumulative radiation dose is used as a key assessment metric. Initially, a model estimating the average time for evacuating a route within a given time window is designed using a fuzzy network. In addition, a time-varying dynamic radiation dose model is proposed by incorporating the cumulative radiation dose calculation. The ant colony algorithm's iterative process is enhanced by the incorporation of the simulated annealing algorithm, while the heuristic approach of A* algorithm is employed for neighborhood searches. This integration results in an enhanced capacity for global optimization of the algorithm. For refining the local search capabilities of the algorithm, Pareto ordering is implemented. Additionally, the pheromone update method of the ACO algorithm is adjusted to account for the impact of distance on pheromone increments. Upon employing the HACO algorithm, simulation results indicate a 31% improvement in average convergence value and 30% boost in stability over the conventional ACO algorithm. These enhancements are instrumental in fortifying the planning of evacuation routes in the event of nuclear accidents.
核事故路径规划混合蚁群算法动态模糊网络累积辐射剂量模型
Nuclear accidentsPath planningHybrid ant colony algorithmDynamic fuzzy networkCumulative radiation dose model
湛丽, 韦卫军, 邹益民. 对加强核电厂核事故应急工作的探讨[C]//中国核学会. 中国核科学技术进展报告(第二卷)—中国核学会2011年学术年会论文集第3册(核能动力分卷(下)). 北京: 中国原子能出版社, 2012: 515-520.
ZHAN LI, WEI Weijun, ZOU Yimin. Discussion on strengthening emergency work for nuclear accidents in nuclear power plants[C]//Chinese Nuclear Society.Progress roport on China nuclear science & technology (Volume II)—Proceedings of the 2011 Academic Aannual Conference of the Chinese Nuclear Society, Book 3 (Sub-volume of nuclear power). Beijing: China Atomic Energy Press, 2012: 515-520.
Huang X D, Du F L. Off-site emergency response of AP1000[C]//Proceedings of 2013 21st International Conference on Nuclear Engineering. Chengdu, China. ASME, 2014. DOI: 10.1115/ICONE21-16718http://dx.doi.org/10.1115/ICONE21-16718.
Sultan M S, Chen X P, Qadeer N, et al. Vision guided path planning system for vehicles using infrared landmark[C]//2013 IEEE International Conference on Robotics and Biomimetics (ROBIO). Shenzhen, China. IEEE, 2014: 179-184. DOI: 10.1109/ROBIO.2013.6739455http://dx.doi.org/10.1109/ROBIO.2013.6739455.
Alzalloum A Q. Application of shortest path algorithms to find paths of minimum radiation dose[D].Urbana, Illinois: University of Illinois at Urbana-Champaign, 2009.
Pei Q Y, Hao L J, Chen C H, et al. Minimum collective dose based optimal evacuation path-planning method under nuclear accidents[J]. Annals of Nuclear Energy, 2020, 147: 107644. DOI: 10.1016/j.anucene.2020. 107644http://dx.doi.org/10.1016/j.anucene.2020.107644.
Fernandes E, Costa P, Lima J, et al. Towards an orientation enhanced astar algorithm for robotic navigation[C]//2015 IEEE International Conference on Industrial Technology (ICIT). Seville, Spain. IEEE, 2015: 3320-3325. DOI: 10.1109/ICIT.2015.7125590http://dx.doi.org/10.1109/ICIT.2015.7125590.
Chen C, Cai J J, Wang Z, et al. An improved A* algorithm for searching the minimum dose path in nuclear facilities[J]. Progress in Nuclear Energy, 2020, 126: 103394. DOI: 10.1016/j.pnucene.2020.103394http://dx.doi.org/10.1016/j.pnucene.2020.103394.
邱朦文, 张华, 周怀芳. 基于改进人工势场-A*算法的核辐射环境路径规划[J]. 辐射研究与辐射工艺学报, 2022, 40(6): 060601. DOI: 10.11889/j.1000-3436.2022-0054http://dx.doi.org/10.11889/j.1000-3436.2022-0054.
QIU Mengwen, ZHANG Hua, ZHOU Huaifang. Path planning for nuclear radiation environments based on an improved artificial potential field A*algorithm[J]. Journal of Radiation Research and Radiation Processing, 2022, 40(6): 060601. DOI: 10.11889/j.1000-3436.2022-0054http://dx.doi.org/10.11889/j.1000-3436.2022-0054.
赵恒柱, 杨明翰, 邓多成, 等. 期望核辐射剂量下移动机器人的路径规划[J]. 辐射研究与辐射工艺学报, 2021, 39(5): 050601. DOI: 10.11889/j.1000-3436.2021.rrj.39. 050601http://dx.doi.org/10.11889/j.1000-3436.2021.rrj.39.050601.
ZHAO Hengzhu, YANG Minghan, DENG Duocheng, et al. Path planning of mobile robot under expected radiation dose[J]. Journal of Radiation Research and Radiation Processing, 2021, 39(5): 80-87. DOI: 10.11889/j.1000-3436.2021.rrj.39.050601http://dx.doi.org/10.11889/j.1000-3436.2021.rrj.39.050601.
郑志强, 段方, 宋国鹏, 等. 无人车路径规划算法研究综述[C]//2022年无人系统高峰论坛(USS2022)论文集, 2022: 116-120.
ZHENG Zhiqiang, DUAN Fang, SONG Guopeng, et al. Summary of research on path planning algorithm of unmanned vehicle[C]//Proceedings of the 2022 Unmanned Systems Summit (USS2022), 2022: 116-120.
Wang Z, Cai J J. The path-planning in radioactive environment of nuclear facilities using an improved particle swarm optimization algorithm[J]. Nuclear Engineering and Design, 2018, 326: 79-86. DOI: 10.1016/j.nucengdes.2017.11.006http://dx.doi.org/10.1016/j.nucengdes.2017.11.006.
韩红桂, 徐子昂, 王晶晶. 基于Q学习的多任务多目标粒子群优化算法[J]. 控制与决策, 2023, 38(11): 3039-3047. DOI: 10.13195/j.kzyjc.2022.1662http://dx.doi.org/10.13195/j.kzyjc.2022.1662.
HAN Honggui, XU Ziang, WANG Jingjing. A Q-learning-based Multi-task Multi-objective Particle SwarmOptimization Algorithm[J]. Control and Decision, 2023, 38(11): 3039-3047. DOI: 10.13195/j.kzyjc.2022.1662http://dx.doi.org/10.13195/j.kzyjc.2022.1662.
Zhou H F, Zhang H, Qiu M W. Radiation avoiding algorithm for nuclear robot path optimization[J]. Annals of Nuclear Energy, 2022, 169: 108948. DOI: 10.1016/j.anucene.2021.108948http://dx.doi.org/10.1016/j.anucene.2021.108948.
张广成, 何桃, 郑晓磊, 等. 基于剂量权重因子与蚁群算法耦合的核应急路径规划仿真[J]. 辐射研究与辐射工艺学报, 2020, 38(2): 020601. DOI: 10.11889/j.1000-3436.2020.rrj.38.020601http://dx.doi.org/10.11889/j.1000-3436.2020.rrj.38.020601.
ZHANG Guangcheng, HE Tao, ZHENG Xiaolei, et al. Simulation research of nuclear emergency path planning based on the coupling of dose weight factor and ant colony optimization[J]. Journal of Radiation Research and Radiation Processing, 2020, 38(2): 020601. DOI: 10.11889/j.1000-3436.2020.rrj.38.020601http://dx.doi.org/10.11889/j.1000-3436.2020.rrj.38.020601.
Tang Z H, Xie X W, Cai J J, et al. An optimization method of multi-objective evacuation path for off-site emergency under severe nuclear accidents[J]. Annals of Nuclear Energy, 2022, 174: 109170. DOI: 10.1016/j.anucene.2022.109170http://dx.doi.org/10.1016/j.anucene.2022.109170.
魏强, 朱波, 谢长记. 核应急多约束条件下人员行动路径规划仿真研究[J]. 核动力工程, 2013, 34(4): 176-179. DOI: 10.3969/j.issn.0258-0926.2013.04.041http://dx.doi.org/10.3969/j.issn.0258-0926.2013.04.041.
WEI Qiang, ZHU Bo, XIE Changji. Simulation research on path planning of nuclear emergency decision with constraints[J]. Nuclear Power Engineering, 2013, 34(4): 176-179. DOI: 10.3969/j.issn.0258-0926.2013.04.041http://dx.doi.org/10.3969/j.issn.0258-0926.2013.04.041.
余琦, 刘原中. 分段烟羽模型和烟团模型在核事故应急中的应用比较[J]. 核科学与工程, 2001, 21(3): 288-292. DOI: 10.3321/j.issn:0258-0918.2001.03.016http://dx.doi.org/10.3321/j.issn:0258-0918.2001.03.016.
YU Qi, LIU Yuanzhong. Application of a Gaussian segmented plume model and a Lagrangian puff model during the nuclear emergency[J]. Chinese Journal of Nuclear Science and Engineering, 2001, 21(3): 288-292. DOI: 10.3321/j.issn:0258-0918.2001.03.016http://dx.doi.org/10.3321/j.issn:0258-0918.2001.03.016.
Terada H, Katata G, Chino M, et al. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion[J]. Journal of Environmental Radioactivity, 2012, 112: 141-154. DOI: 10.1016/j.jenvrad.2012.05.023http://dx.doi.org/10.1016/j.jenvrad.2012.05.023.
ICRP. ICRP Publication 60 radiation protection, 1990 recommendations of the international commission radiological protection[J]. Annals of the ICRP, 1991, 21: 1-3.
王永红. 福岛核事故应急[M]. 北京: 国防工业出版社, 2015.
WANG Yonghong. Fukushima nuclear accident emergency[M]. Beijing: Published by National Defense Industries Press, 2005.
Wang L, Gao Z Y, Yang L X. A priori least expected time paths in fuzzy, time-variant transportation networks[J]. Engineering Optimization, 2016, 48(2): 272-298. DOI: 10.1080/0305215x.2015.1005081http://dx.doi.org/10.1080/0305215x.2015.1005081.
Zadeh L A. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets and Systems, 1978, 1(1): 3-28. DOI: 10.1016/0165-0114(78)90029-5http://dx.doi.org/10.1016/0165-0114(78)90029-5.
Liu B. Uncertainty theory: an introduction to its axiomatic foundation[M]. Berlin:Springer-Verlag Berlin Heidelberg, 2004. DOI: 10.1007/978-3-540-39987-2http://dx.doi.org/10.1007/978-3-540-39987-2.
Giagkiozis I, Purshouse R C, Fleming P J. An overview of population-based algorithms for multi-objective optimisation[J]. International Journal of Systems Science, 2015, 46(9): 1572-1599. DOI: 10.1080/00207721.2013. 823526http://dx.doi.org/10.1080/00207721.2013.823526.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构